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Mission 

 

 To impart cutting-edge Artificial Intelligence technology in accordance with 

industry norms. 

 To instil in students a desire to conduct research in order to tackle challenging 

technical problems for industry by sustaining the ethical values. 

 To develop effective graduates who are responsible for their professional 

growth, leadership qualities and are committed to lifelong learning. 

 

QUALITY POLICY 

 To provide sophisticated technical infrastructure and to inspire students to reach 

their full potential. 

 To provide students with a solid academic and research environment for a 

comprehensive learning experience. 

 To provide research development, consulting, testing, and customized training to 

satisfy specific industrial demands, thereby encouraging self-employment and 

entrepreneurship among students. 
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(R20A6610) DEEP LEARNING 
COURSE OBJECTIVES: 

1. To understand the basic concepts and techniques of Deep Learning and the need of Deep 

Learning techniques in real-world problems 

2. To understand CNN algorithms and the way to evaluate performance of the CNN architectures. 

3. To apply RNN and LSTM to learn, predict and classify the real-world problems in the paradigms of 

Deep Learning. 

4. To understand, learn and design GANs for the selected problems. 

5. To understand the concept of Auto-encoders and enhancing GANs using auto-encoders. 

 

 

UNIT-I: 
INTRODUCTION TO DEEP LEARNING: Historical Trends in Deep Learning, 

Why DL is Growing, Artificial Neural Network, Non-linear classification example 

using Neural Networks: XOR/XNOR, Single/Multiple Layer Perceptron, Feed 

Forward Network, Deep Feed- forward networks, Stochastic Gradient –Based 

learning, Hidden Units, Architecture Design, Back- Propagation. 

UNIT-II: 

CONVOLUTION NEURAL NETWORK (CNN): Introduction to CNNs and their 

applications in computer vision, CNN basic architecture, Activation functions-

sigmoid, tanh, ReLU, Softmax layer, Types of pooling layers, Training of CNN in 

TensorFlow, various popular CNN architectures: VGG, Google Net, ResNet etc, 

Dropout, Normalization, Data augmentation 

UNIT-III 

RECURRENT NEURAL NETWORK (RNN): Introduction to RNNs and their 

applications in sequential data analysis, Back propagation through time (BPTT), 

Vanishing Gradient Problem, gradient clipping Long Short Term Memory (LSTM) 

Networks, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs. 

UNIT- IV 

GENERATIVE ADVERSARIAL NETWORKS (GANS): Generative models, 

Concept and principles of GANs, Architecture of GANs (generator and 

discriminator networks), Comparison between discriminative and generative 

models, Generative Adversarial Networks (GANs), Applications of GANs 

UNIT- V 
AUTO-ENCODERS: Auto-encoders, Architecture and components of auto-

encoders (encoder and decoder), Training an auto-encoder for data compression 

and reconstruction, Relationship between Autoencoders and GANs, Hybrid 

Models: Encoder-Decoder GANs. 

 

 

 

 

 

 

 



TEXT BOOKS: 
1. Deep Learning : An MIT Press Book by Ian Goodfellow and Yoshua Bengio Aaron Courville. 

2. Michael Nielson,Neural Networks and Deep Learning,Determination Press,2015. 

3. Satish kumar,Neural networks:A classroom Approach,Tata McGraw-Hill Education,2004 

 

REFERENCES: 
1. Deep Learning with Python, Francois Chollet, Manning publications 2018 

2. Advanced Deep   Learning   with   Keras, Rowel   Atienza, PACKT   Publications   2018 

 

 

COURSE OUTCOMES: 
 

CO1: Understand the basic concepts and techniques of Deep Learning and the 
need of Deep Learning techniques in real-world problems. 

CO2:  Understand CNN algorithms and the way to evaluate performance of 

the CNN architectures. 

CO3: Apply RNN and LSTM to learn, predict and classify the real-world 

problems in the paradigms of Deep Learning. 
CO4: Understand, learn and design GANs for the selected problems. 
CO5: Understand the concept of Auto-encoders and enhancing GANs using auto-
encoders. 



B.Tech –AIML   R-22 
 
 

Deep Learning 

UNIT-I: 
INTRODUCTION TO DEEP LEARNING: Historical Trends in 

Deep Learning, Why DL is Growing, Artificial Neural Network, 

Non-linear classification example using Neural Networks: 

XOR/XNOR, Single/Multiple Layer Perceptron, Feed Forward 

Network, Deep Feed- forward networks, Stochastic Gradient –Based 

learning, Hidden Units, Architecture Design, Back- Propagation, 

Deep learning frameworks and libraries (e.g., TensorFlow/Keras, 

PyTorch). 

INTRODUCTION TO DEEP LEARNING: 

Deep learning is a branch of machine learning which is based on artificial neural networks. 
It is capable of learning complex patterns and relationships within data. In deep learning, 
we don’t need to explicitly program everything. It has become  increasingly popular in 
recent years due to the advances in processing power and the availability of large 
datasets. Because it is based on artificial neural networks (ANNs) also known as deep 
neural networks (DNNs). These neural networks are inspired by the structure and function 
of the human brain’s biological neurons, and they are designed to learn from large 
amounts of data. 

1. Deep Learning is a subfield of Machine Learning that involves the use of neural 
networks to model and solve complex problems. Neural networks are modeled 
after the structure and function of the human brain and consist of layers of 
interconnected nodes that process and transform data. 

2. The key characteristic of Deep Learning is the use of deep neural networks, 
which have multiple layers of interconnected nodes. These networks can learn 
complex representations of data by discovering hierarchical patterns and 
features in the data. Deep Learning algorithms can automatically learn and 
improve from data without the need for manual feature engineering. 

3. Deep Learning has achieved significant success in various fields, including image 
recognition, natural language processing, speech recognition, and 
recommendation systems. Some of the popular Deep Learning architectures 
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), and Deep Belief Networks (DBNs). 

4. Training deep neural networks typically requires a large amount of data and 
computational resources. However, the availability of cloud computing and the 
development of specialized hardware, such as Graphics Processing Units 
(GPUs), has made it easier to train deep neural networks. 

In summary, Deep Learning is a subfield of Machine Learning that involves the use of deep 
neural networks to model and solve complex problems. Deep Learning has achieved 
significant success in various fields, and its use is expected to continue to grow as more 
data becomes available, and more powerful computing resources become available. 
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What is Deep Learning?  

Deep learning is the branch of machine learning which is based on artificial neural network 
architecture. An artificial neural network or ANN uses layers of interconnected nodes 
called neurons that work together to process and learn from the input data. 
In a fully connected Deep neural network, there is an input layer and one or more hidden 
layers connected one after the other. Each neuron receives input from the previous layer 
neurons or the input layer. The output of one neuron becomes the input to other neurons 
in the next layer of the network, and this process continues until the final layer produces 
the output of the network. The layers of the neural network transform the input data 
through a series of nonlinear transformations, allowing the network to learn complex 
representations of the input data. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Today Deep learning has become one of the most popular and visible areas of machine 
learning, due to its success in a variety of applications, such as computer vision, natural 
language processing, and Reinforcement learning. 

https://www.geeksforgeeks.org/machine-learning/
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Deep learning can be used for supervised, unsupervised as well as reinforcement machine 
learning. it uses a variety of ways to process these. 

 

 Supervised Machine Learning: Supervised machine learning is the machine 
learning technique in which the neural network learns to make predictions or 
classify data based on the labeled datasets. Here we input both input features 
along with the target variables. the neural network learns to make predictions 
based on the cost or error that comes from the difference between the 
predicted and the actual target, this process is known as backpropagation. 
 Deep learning algorithms like Convolutional neural networks, Recurrent neural 
networks are used for many supervised tasks like image classifications and 
recognization, sentiment analysis, language translations, etc. 

 Unsupervised Machine Learning: Unsupervised machine learning is 
the machine learning technique in which the neural network learns to discover 
the patterns or to cluster the dataset based on unlabeled datasets. Here there 
are no target variables. while the machine has to self-determined the hidden 
patterns or relationships within the datasets. Deep learning algorithms like 
autoencoders and generative models are used for unsupervised tasks like 
clustering, dimensionality reduction, and anomaly detection. 

 Reinforcement  Machine Learning: Reinforcement  Machine Learning is 
the machine learning technique in which an agent learns to make decisions in 
an environment to maximize a reward signal. The agent interacts with the 
environment by taking action and observing the resulting rewards. Deep 
learning can be used to learn policies, or a set of actions, that maximizes the 
cumulative reward over time. Deep reinforcement learning algorithms like 
Deep Q networks and Deep Deterministic Policy Gradient (DDPG) are used to 
reinforce tasks like robotics and game playing etc. 
 

Artificial neural networks: 
Artificial neural networks are built on the principles of the structure and operation of 
human neurons. It is also known as neural networks or neural nets. An artificial neural 
network’s input layer, which is the first layer, receives input from external sources and 
passes it on to the hidden layer, which is the second layer. Each neuron in the hidden layer 
gets information from the neurons in the previous layer, computes the weighted total, 
and then transfers it to the neurons in the next layer. These connections are weighted, 
which means that the impacts of the inputs from the preceding layer are more or less 
optimized by giving each input a distinct weight. These weights are then adjusted during 
the training process to enhance the performance of the model. 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
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Fully Connected Artificial Neural Network 

Artificial neurons, also known as units, are found in artificial neural networks. The whole 
Artificial Neural Network is composed of these artificial neurons, which are arranged in a 
series of layers. The complexities of neural networks will depend on the 
complexities of the underlying patterns in the dataset whether a layer has a dozen units or 
millions of units.  Commonly, Artificial Neural Network has an input layer, an output layer 
as well as hidden layers. The input layer receives data from the outside world which the 
neural network needs to analyze or learn about. 

In a fully connected artificial neural network, there is an input layer and one or more 
hidden layers connected one after the other. Each neuron receives input from the 
previous layer neurons or the input layer. The output of one neuron becomes the input to 
other neurons in the next layer of the network, and this process continues until the final 
layer produces the output of the network. Then, after passing through one or more hidden 
layers, this data is transformed into valuable data for the output layer. Finally, the output 
layer provides an output in the form of an artificial neural network’s response to the data 
that comes in.  

Units are linked to one another from one layer to another in the bulk of neural networks. 
Each of these links has weights that control how much one-unit influences another. The 
neural network learns more and more about the data as it moves from one unit to 
another, ultimately producing an output from the output layer.  

Difference between Machine Learning and Deep Learning: 

Machine learning and deep learning both are subsets of artificial intelligence but there are 
many similarities and differences between them. 

Machine Learning Deep Learning 

https://www.geeksforgeeks.org/machine-learning/


B.Tech –AIML   R-22 
 
 

Deep Learning 

Machine Learning Deep Learning 

Apply statistical algorithms to learn the 

hidden patterns and relationships in the 

dataset. 

Uses artificial neural network 

architecture to learn the hidden patterns 

and relationships in the dataset. 

Can work on the smaller amount of dataset 
Requires the larger volume of dataset 

compared to machine learning 

Better for the low-label task. 

Better for complex task like image 

processing, natural language processing, 

etc. 

Takes less time to train the model. Takes more time to train the model. 

A model is created by relevant features 

which are manually extracted from images 

to detect an object in the image. 

Relevant features are automatically 

extracted from images. It is an end-to-

end learning process. 

Less complex and easy to interpret the 

result. 

More complex, it works like the black box 

interpretations of the result are not easy. 

It can work on the CPU or requires less 

computing power as compared to deep 

learning. 

It requires a high-performance computer 

with GPU. 

Types of neural networks: 

Deep Learning models are able to automatically learn features from the data, which 
makes them well-suited for tasks such as image recognition, speech recognition, and 
natural language processing. The most widely used architectures in deep learning are 
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feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural 
networks (RNNs). 

Feedforward neural networks (FNNs) are the simplest type of ANN, with a linear flow of 
information through the network. FNNs have been widely used for tasks such as image 
classification, speech recognition, and natural language processing. 
Convolutional Neural Networks (CNNs) are specifically for image and video recognition 
tasks. CNNs are able to automatically learn features from the images, which makes them 
well-suited for tasks such as image classification, object detection, and image 
segmentation. 
Recurrent Neural Networks (RNNs) are a type of neural network that is able to process 
sequential data, such as time series and natural language. RNNs are able to maintain an 
internal state that captures information about the previous inputs, which makes them 
well-suited for tasks such as speech recognition, natural language processing, and 
language translation. 
 
Applications of Deep Learning : 

The main applications of deep learning can be divided into computer vision, natural 

language processing (NLP), and reinforcement learning.  
 
 

Computer vision 

In computer vision, Deep learning models can enable machines to identify and understand 

visual data. Some of the main applications of deep learning in computer vision include: 

 Object detection and recognition: Deep learning model can be used to identify 

and locate objects within images and videos, making it possible for machines to 

perform tasks such as self-driving cars, surveillance, and robotics.  

 Image classification: Deep learning models can be used to classify images into 

categories such as animals, plants, and buildings. This is used in applications 

such as medical imaging, quality control, and image retrieval.  

 Image segmentation: Deep learning models can be used for image 

segmentation into different regions, making it possible to identify specific 

features within images. 

https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
https://www.geeksforgeeks.org/applications-of-computer-vision/
https://www.geeksforgeeks.org/applications-of-computer-vision/


B.Tech –AIML   R-22 
 
 

Deep Learning 

Natural language processing (NLP):  
In NLP, the Deep learning model can enable machines to understand and generate human 

language. Some of the main applications of deep learning in NLP include:  

 Automatic Text Generation – Deep learning model can learn the corpus of text 

and new text like summaries, essays can be automatically generated using these 

trained models. 

 Language translation: Deep learning models can translate text from one 

language to another, making it possible to communicate with people from 

different linguistic backgrounds.  

 Sentiment analysis: Deep learning models can analyze the sentiment of a piece 

of text, making it possible to determine whether the text is positive, negative, or 

neutral. This is used in applications such as customer service, social media 

monitoring, and political analysis.  

 Speech recognition: Deep learning models can recognize and transcribe spoken 

words, making it possible to perform tasks such as speech-to-text conversion, 

voice search, and voice-controlled devices.  

Reinforcement learning:  
In reinforcement learning, deep learning works as training agents to take action in an 

environment to maximize a reward. Some of the main applications of deep learning in 

reinforcement learning include:  

 Game playing: Deep reinforcement learning models have been able to beat 

human experts at games such as Go, Chess, and Atari.  

 Robotics: Deep reinforcement learning models can be used to train robots to 

perform complex tasks such as grasping objects, navigation, and manipulation.  

 Control systems: Deep reinforcement learning models can be used to control 

complex systems such as power grids, traffic management, and supply chain 

optimization.  

Popular specific applications of DL: 

 
 

 

 

 

 

 

Challenges in Deep Learning: 
Deep learning has made significant advancements in various fields, but there are still 

some challenges that need to be addressed. Here are some of the main challenges in 

deep learning: 

1. Data availability: It requires large amounts of data to learn from. For using 

deep learning it’s a big concern to gather as much data for training. 

2. Computational Resources: For training the deep learning model, it is 

computationally expensive because it requires specialized hardware like 

GPUs and TPUs. 

3. Time-consuming: While working on sequential data depending on the 

computational resource it can take very large even in days or months.  

https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
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4. Interpretability: Deep learning models are complex, it works like a black 

box. it is very difficult to interpret the result. 

5. Overfitting: when the model is trained again and again, it becomes too 

specialized for the training data, leading to overfitting and poor 

performance on new data. 

Advantages of Deep Learning: 

1. High accuracy: Deep Learning algorithms can achieve state-of-the-art 

performance in various tasks, such as image recognition and natural 

language processing. 

2. Automated feature engineering: Deep Learning algorithms can 

automatically discover and learn relevant features from data without the 

need for manual feature engineering. 

3. Scalability: Deep Learning models can scale to handle large and complex 

datasets, and can learn from massive amounts of data. 

4. Flexibility: Deep Learning models can be applied to a wide range of tasks 

and can handle various types of data, such as images, text, and speech. 

5. Continual improvement: Deep Learning models can continually improve 

their performance as more data becomes available. 

Disadvantages of Deep Learning: 

1. High computational requirements: Deep Learning models require large 

amounts of data and computational resources to train and optimize. 

2. Requires large amounts of labeled data: Deep Learning models often 

require a large amount of labeled data for training, which can be expensive 

and time- consuming to acquire. 

3. Interpretability: Deep Learning models can be challenging to interpret, 

making it difficult to understand how they make decisions. 

Overfitting: Deep Learning models can sometimes overfit to the training 

data, resulting in poor performance on new and unseen data. 

4. Black-box nature: Deep Learning models are often treated as black boxes, 

making it difficult to understand how they work and how they arrived at 

their predictions. 

In summary, while Deep Learning offers many advantages, including high 

accuracy and scalability, it also has some disadvantages, such as high 

computational requirements, the need for large amounts of labeled data, 

and interpretability challenges. These limitations need to be carefully 

considered when deciding whether to use Deep Learning for a specific 

task. 

Historical Trends in Deep Learning: 

Deep learning has experienced significant historical trends since its inception. 
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Here are some key milestones and trends that have shaped the field: 
1. Early Developments: Deep learning traces its roots back to the 
1960s with the development of artificial neural networks (ANNs). 

• The idea of using interconnected nodes inspired by the human 
brain's structure laid the foundation for later deep learning 
advancements. 

2. Winter of AI: In the 1970s and 1980s, deep learning faced a period of stagnation 

known as the "AI winter." 

• Limited computational power, insufficient data, and theoretical 
challenges hindered progress in the field, leading to decreased 
interest and funding. 

3. Backpropagation: In the 1980s, the backpropagation algorithm, 
which efficiently trains deep neural networks, was rediscovered and 
popularized. 

• This breakthrough allowed for more efficient training of 
multi-layer neural networks, addressing some of the 
limitations faced during the AI winter. 

4. Rise of Convolutional Neural Networks (CNNs): In the late 1990s and 
early 2000s, CNNs gained prominence in the field of computer vision. 

• The LeNet-5 architecture developed by Yann LeCun revolutionized 
image recognition tasks and demonstrated the potential of deep 
learning in visual perception. 

5. Big Data and GPUs: The early 2010s marked a turning point for 
deep learning with the advent of big data and the availability of 
powerful Graphics Processing Units (GPUs). 

• The abundance of labeled data, combined with GPU acceleration, 
enabled the training of large-scale deep neural networks and 
significantly improved performance. 

6. ImageNet and Deep Learning Renaissance: The ImageNet Large Scale 
Visual Recognition Challenge in 2012, won by a deep neural network known 
as AlexNet, brought deep learning into the spotlight. 

• This event sparked a renaissance in the field, encouraging 
researchers to explore deep learning architectures and techniques 
across various domains. 

7. Deep Learning in Natural Language Processing (NLP): Deep learning 
techniques, particularly recurrent neural networks (RNNs) and later transformer 
models, have made substantial advancements in NLP tasks. 

• Models like LSTM (Long Short-Term Memory) and BERT 
(Bidirectional Encoder Representations from Transformers) have 
achieved state-of-the-art results in tasks like machine translation, 
sentiment analysis, and question answering. 

8. Generative Models: The introduction of generative models like 
Variational Autoencoders (VAEs) and Generative Adversarial 
Networks (GANs) opened up possibilities for generating realistic 
images, videos, and audio. 

• GANs, in particular, have demonstrated impressive capabilities in generating 
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synthetic data. 
9. Transfer Learning and Pretraining: Transfer learning has become a 
prevalent technique in deep learning, enabling models to leverage 
knowledge from pretraining on large datasets and then fine-tune on 
specific tasks. 

• This approach has led to significant performance improvements and 
reduced training time, especially in scenarios with limited labeled 
data. 

10. Explainability and Interpretability: As deep learning models have 
become increasingly complex, researchers have focused on improving 
their explainability and interpretability. 

• Techniques like attention mechanisms, saliency maps, and 
model-agnostic interpretability methods aim to shed light on the 
decision-making processes of deep learning models. 

Why DL is Growing: 

• Processing power needed for Deep learning is readily becoming 

available using GPUs, Distributed Computing and powerful CPUs. 

• Moreover, as the data amount grows, Deep Learning models 

seem to outperform Machine Learning models. 

• Focus on customization and real time decision. 

• Uncover patterns that is hard to detect using traditional 

techniques. Find latent features (super variables) without 

significant manual feature engineering. 
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Process in ML/DL: 

 

Artificial Neural Networks: 

Artificial Neural Networks contain artificial neurons which are called units. These units are 

arranged in a series of layers that together constitute the whole Artificial Neural Network in 

a system.  

 

A layer can have only a dozen units or millions of units as this depends on how the 

complex neural networks will be required to learn the hidden patterns in the dataset. 

Commonly, Artificial Neural Network has an input layer, an output layer as well as hidden 

layers.  

 

The input layer receives data from the outside world which the neural network needs to 

analyze or learn about. Then this data passes through one or multiple hidden layers that 

transform the input into data that is valuable for the output layer. Finally, the output layer 

provides an output in the form of a response of the Artificial Neural Networks to input data 

provided.  

 
In the majority of neural networks, units are interconnected from one layer to another. Each 

of these connections has weights that determine the influence of one unit on another unit. 

As the data transfers from one unit to another, the neural network learns more and more 

about the data which eventually results in an output from the output layer.  
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The structures and operations of human neurons serve as the basis for artificial neural 

networks. It is also known as neural networks or neural nets. The input layer of an artificial 

neural network is the first layer, and it receives input from external sources and releases it 

to the hidden layer, which is the second layer. In the hidden layer, each neuron receives 

input from the previous layer neurons, computes the weighted sum, and sends it to the 

neurons in the next layer. These connections are weighted means effects of the inputs from 

the previous layer are optimized more or less by assigning different-different weights to 

each input and it is adjusted during the training process by optimizing these weights for 

improved model performance.  

Artificial neurons vs Biological neurons 

The concept of artificial neural networks comes from biological neurons found in animal 

brains So they share a lot of similarities in structure and function wise. 

 Structure: The structure of artificial neural networks is inspired by biological 

neurons. A biological neuron has a cell body or soma to process the impulses, 

dendrites to receive them, and an axon that transfers them to other neurons.  The 

input nodes of artificial neural networks receive input signals, the hidden layer 

nodes compute these input signals, and the output layer nodes compute the final 

output by processing the hidden layer’s results using activation functions. 

Biological Neuron Artificial Neuron 

Dendrite Inputs 

Cell nucleus or Soma Nodes 
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Biological Neuron Artificial Neuron 

Synapses Weights 

Axon Output 

 

 Synapses: Synapses are the links between biological neurons that enable the 

transmission of impulses from dendrites to the cell body. Synapses are the 

weights that join the one-layer nodes to the next-layer nodes in artificial 

neurons. The strength of the links is determined by the weight value.  

 Learning: In biological neurons, learning happens in the cell body nucleus or 

soma, which has a nucleus that helps to process the impulses. An action 

potential is produced and travels through the axons if the impulses are powerful 

enough to reach the threshold. This becomes possible by synaptic plasticity, 

which represents the ability of synapses to become stronger or weaker over time 

in reaction to changes in their activity. In artificial neural networks, 

backpropagation is a technique used for learning, which adjusts the weights 

between nodes according to the error or differences between predicted and 

actual outcomes. 

Biological Neuron Artificial Neuron 

Synaptic plasticity Backpropagations 

 Activation: In biological neurons, activation is the firing rate of the neuron 

which happens when the impulses are strong enough to reach the threshold. In 

artificial neural networks, A mathematical function known as an activation 

function maps the input to the output, and executes activations. 
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How do Artificial Neural Networks learn? 

Artificial neural networks are trained using a training set. For example, suppose you want 

to teach an ANN to recognize a cat. Then it is shown thousands of different images of cats 

so that the network can learn to identify a cat. Once the neural network has been trained 

enough using images of cats, then you need to check if it can identify cat images correctly. 

This is done by making the ANN classify the images it is provided by deciding whether 

they are cat images or not. The output obtained by the ANN is corroborated by a human-

provided description of whether the image is a cat image or not. If the ANN identifies 

incorrectly then back-propagation is used to adjust whatever it has learned during 

training. Backpropagation is done by fine-tuning the weights of the connections in ANN 

units based on the error rate obtained. This process continues until the artificial neural 

network can correctly recognize a cat in an image with minimal possible error rates.   

What are the types of Artificial Neural Networks? 

 Feedforward Neural Network: The feedforward neural network is one of the 

most basic artificial neural networks. In this ANN, the data or the input provided 

travels in a single direction. It enters into the ANN through the input layer and 

exits through the output layer while hidden layers may or may not exist. So, the 

feedforward neural network has a front-propagated wave only and usually does 

not have backpropagation.  

 Convolutional Neural Network: A Convolutional neural network has some 

similarities to the feed-forward neural network, where the connections between 

units have weights that determine the influence of one unit on another unit. But a 

CNN has one or more than one convolutional layer that uses a convolution 

operation on the input and then passes the result obtained in the form of output 

to the next layer. CNN has applications in speech and image processing which is 

particularly useful in computer vision.  

 Modular Neural Network: A Modular Neural Network contains a collection of 

different neural networks that work independently towards obtaining the output 

with no interaction between them. Each of the different neural networks 

performs a different sub-task by obtaining unique inputs compared to other 

networks. The advantage of this modular neural network is that it breaks down a 

large and complex computational process into smaller components, thus 

decreasing its complexity while still obtaining the required output.  

 Radial basis function Neural Network: Radial basis functions are those 

functions that consider the distance of a point concerning the center. RBF 

functions have two layers. In the first layer, the input is mapped into all the 

Radial basis functions in the hidden layer and then the output layer computes the 

output in the next step. Radial basis function nets are normally used to model the 

data that represents any underlying trend or function.  

 Recurrent Neural Network: The Recurrent Neural Network saves the output of 

a layer and feeds this output back to the input to better predict the outcome of 

the layer. The first layer in the RNN is quite similar to the feed-forward neural 

network and the recurrent neural network starts once the output of the first layer 

is computed. After this layer, each unit will remember some information from 

https://www.geeksforgeeks.org/deep-neural-net-with-forward-and-back-propagation-from-scratch-python/
https://www.geeksforgeeks.org/backpropagation-in-data-mining/
https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
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the previous step so that it can act as a memory cell in performing 

computations.  

Applications of Artificial Neural Networks 

1. Social Media: Artificial Neural Networks are used heavily in Social Media. For 

example, let’s take the ‘People you may know’ feature on Facebook that 

suggests people that you might know in real life so that you can send them 

friend requests. Well, this magical effect is achieved by using Artificial Neural 

Networks that analyze your profile, your interests, your current friends, and also 

their friends and various other factors to calculate the people you might 

potentially know. Another common application of Machine Learning in social 

media is facial recognition. This is done by finding around 100 reference points 

on the person’s face and then matching them with those already available in the 

database using convolutional neural networks.  

2. Marketing and Sales: When you log onto E-commerce sites like Amazon and 

Flipkart, they will recommend your products to buy based on your previous 

browsing history. Similarly, suppose you love Pasta, then Zomato, Swiggy, etc. 

will show you restaurant recommendations based on your tastes and previous 

order history. This is true across all new-age marketing segments like Book 

sites, Movie services, Hospitality sites, etc. and it is done by 

implementing personalized marketing. This uses Artificial Neural Networks to 

identify the customer likes, dislikes, previous shopping history, etc., and then 

tailor the marketing campaigns accordingly.  

3. Healthcare: Artificial Neural Networks are used in Oncology to train algorithms 

that can identify cancerous tissue at the microscopic level at the same accuracy 

as trained physicians. Various rare diseases may manifest in physical 

characteristics and can be identified in their premature stages by using Facial 

Analysis on the patient photos. So the full-scale implementation of Artificial 

Neural Networks in the healthcare environment can only enhance the diagnostic 

abilities of medical experts and ultimately lead to the overall improvement in the 

quality of medical care all over the world.  

4. Personal Assistants: I am sure you all have heard of Siri, Alexa, Cortana, etc., 

and also heard them based on the phones you have!!! These are personal 

assistants and an example of speech recognition that uses Natural Language 

Processing to interact with the users and formulate a response accordingly. 

Natural Language Processing uses artificial neural networks that are made to 

handle many tasks of these personal assistants such as managing the language 

syntax, semantics, correct speech, the conversation that is going on, etc. 

Neural Network, Non-linear classification example using 

Neural Networks: XOR/XNOR: 

XOR problem with neural networks: 

Among various logical gates, the XOR or also known as the 

“exclusive or” problem is one of the logical operations when 

performed on binary inputs that yield output for different 

https://www.geeksforgeeks.org/machine-learning/
https://analyticsindiamag.com/a-hands-on-guide-to-linear-discriminant-analysis-for-binary-classification/
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combinations of input, and for the same combination of input no 

output is produced. The outputs generated by the XOR logic are 

not linearly separable in the hyperplane. So, in this article let us 

see what is the XOR logic and how to integrate the XOR logic 

using neural networks. 

From the below truth table, it can be inferred that XOR produces 

an output for different states of inputs and for the same inputs 

the XOR logic does not produce any output. The Output of XOR 

logic is yielded by the equation as shown below. 

X Y Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output= X.Y’+X’.Y 

The XOR gate can be usually termed as a combination of NOT and AND gates and this 
type of logic finds its vast application in cryptography and fault tolerance. The logical 
diagram of an XOR gate is shown below. 

 

https://analyticsindiamag.com/a-guide-to-quadratic-approximation-with-logistic-regression/
https://analyticsindiamag.com/kernel-regularizers-with-neural-networks/
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The linear separability of points 

Linear separability of points is the ability to classify the data points in 
the hyperplane by avoiding the overlapping of the classes in the planes. 
Each of the classes should fall above or below the separating line and then 
they are termed as linearly separable data points. With respect to logical 
gates operations like AND or OR the outputs generated by this logic are 
linearly separable in the hyperplane. 

The linear separable data points appear to be as shown below. 

 

So here we can see that the pink dots and red triangle points in the plot do not overlap 
each other and the linear line is easily separating the two classes where the upper 
boundary of the plot can be considered as one classification and the below region can be 
considered as the other region of classification. 

Need for linear separability in neural networks 

Linear separability is required in neural networks is required as basic operations of 
neural networks would be in N-dimensional space and the data points of the neural 
networks have to be linearly separable to eradicate the issues with wrong weight 
updation and wrong classifications Linear separability of data is also considered as one 
of the prerequisites which help in the easy interpretation of input spaces into points 
whether the network is positive and negative and linearly separate the data points in 
the hyperplane. 

How to solve the XOR problem with neural networks: 

https://analyticsindiamag.com/feature-selection-using-svm-and-model-building/
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The XOR problem with neural networks can be solved by using Multi-Layer Perceptrons 
or a neural network architecture with an input layer, hidden layer, and output layer. So 
during the forward propagation through the neural networks, the weights get updated 
to the corresponding layers and the XOR logic gets executed. The Neural network 
architecture to solve the XOR problem will be as shown below. 

 

So with this overall architecture and certain weight parameters between 
each layer, the XOR logic output can be yielded through forward 
propagation. The overall neural network architecture uses the Relu 
activation function to ensure the weights updated in each of the processes 
to be 1 or 0 accordingly where for the positive set of weights the output at 
the particular neuron will be 1 and for a negative weight updation at the 
particular neuron will be 0 respectively. So let us understand one output 
for the first input state  

Example:  For X1=0 and X2=0 we should get an input of 0. Let us solve it. 
Solution: Considering X1=0 and X2=0 
H1=RELU(0.1+0.1+0) = 0 
H2=RELU(0.1+0.1+0)=0 
So now we have obtained the weights that were propagated from the input 
layer to the hidden layer. So now let us propagate from the hidden layer to 
the output layer 

Y=RELU(0.1+0.(-2))=0 

https://analyticsindiamag.com/how-to-visualize-backpropagation-in-neural-networks/
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This is how multi-layer neural networks or also known as Multi-Layer 
perceptrons (MLP) are used to solve the XOR problem and for all other 
input sets the architecture provided above can be verified and the right 
outcome for XOR logic can be yielded. 

So among the various logical operations, XOR logical operation is one such problem 
wherein linear separability of data points is not possible using single neurons or 
perceptrons. so for solving the XOR problem for neural networks it is necessary to use 
multiple neurons in the neural network architecture with certain weights and 
appropriate activation functions to solve the XOR problem with neural networks. 

A perceptron is a neural network unit that does a precise computation to detect 

features in the input data. Perceptron is mainly used to classify the data into two 

parts. Therefore, it is also known as Linear Binary Classifier. 

 

Perceptron uses the step function that returns +1 if the weighted sum of its input 0 

and -1. 

The activation function is used to map the input between the required value like (0, 

1) or (-1, 1). 

A regular neural network looks like this: 
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The perceptron consists of 4 parts. 

o Input value or One input layer: The input layer of the perceptron is made of 

artificial input neurons and takes the initial data into the system for further 

processing. 

o Weights and Bias: 

Weight: It represents the dimension or strength of the connection between 

units. If the weight to node 1 to node 2 has a higher quantity, then neuron 1 

has a more considerable influence on the neuron. 

Bias: It is the same as the intercept added in a linear equation. It is an 

additional parameter which task is to modify the output along with the 

weighted sum of the input to the other neuron. 

o Net sum: It calculates the total sum. 

o Activation Function: A neuron can be activated or not, is determined by an 

activation function. The activation function calculates a weighted sum and 

further adding bias with it to give the result. 
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A standard neural network looks like the below diagram. 

 

How does it work? 

The perceptron works on these simple steps which are given below: 

a. In the first step, all the inputs x are multiplied with their weights w. 
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b. In this step, add all the increased values and call them the Weighted sum.

 

c. In our last step, apply the weighted sum to a correct Activation Function. 

For Example: 

A Unit Step Activation Function 

 

There are two types of architecture. These types focus on the functionality of artificial 

neural networks as follows- 

o Single Layer Perceptron 
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o Multi-Layer Perceptron 

Single Layer Perceptron 

The single-layer perceptron was the first neural network model, proposed in 1958 by 

Frank Rosenbluth. It is one of the earliest models for learning. Our goal is to find a 

linear decision function measured by the weight vector w and the bias parameter b. 

To understand the perceptron layer, it is necessary to comprehend artificial neural 

networks (ANNs). 

The artificial neural network (ANN) is an information processing system, whose 

mechanism is inspired by the functionality of biological neural circuits. An artificial 

neural network consists of several processing units that are interconnected. 

This is the first proposal when the neural model is built. The content of the neuron's 

local memory contains a vector of weight. 

The single vector perceptron is calculated by calculating the sum of the input vector 

multiplied by the corresponding element of the vector, with each increasing the 

amount of the corresponding component of the vector by weight. The value that is 

displayed in the output is the input of an activation function. 

Let us focus on the implementation of a single-layer perceptron for an image 

classification problem using TensorFlow. The best example of drawing a single-layer 

perceptron is through the representation of "logistic regression." 

 

Now, we have to do the following necessary steps of training logistic regression- 

o The weights are initialized with the random values at the origination of each 

training. 

o For each element of the training set, the error is calculated with the difference 

between the desired output and the actual output. The calculated error is 

used to adjust the weight. 
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o The process is repeated until the fault made on the entire training set is less 

than the specified limit until the maximum number of iterations has been 

reached. 

we will understand the concept of a multi-layer perceptron and its implementation in 

Python using the TensorFlow library. 

Multi-layer Perceptron : 
Multi-layer perception is also known as MLP. It is fully connected dense layers, which 

transform any input dimension to the desired dimension. A multi-layer perception is a 

neural network that has multiple layers. To create a neural network we combine neurons 

together so that the outputs of some neurons are inputs of other neurons. 

A gentle introduction to neural networks and TensorFlow can be found here: 

 Neural Networks 

 Introduction to TensorFlow 

A multi-layer perceptron has one input layer and for each input, there is one neuron(or 

node), it has one output layer with a single node for each output and it can have any number 

of hidden layers and each hidden layer can have any number of nodes. A schematic diagram 

of a Multi-Layer Perceptron (MLP) is depicted below. 

 

In the multi-layer perceptron diagram above, we can see that there are three inputs and thus 

three input nodes and the hidden layer has three nodes. The output layer gives two outputs, 

therefore there are two output nodes. The nodes in the input layer take input and forward it 

for further process, in the diagram above the nodes in the input layer forwards their output 

to each of the three nodes in the hidden layer, and in the same way, the hidden layer 

processes the information and passes it to the output layer.  

Every node in the multi-layer perception uses a sigmoid activation function. The sigmoid 

activation function takes real values as input and converts them to numbers between 0 and 1 

using the sigmoid formula. 

Feed Forward Network: 

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/introduction-to-tensorflow/
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Why are neural networks used: 

Neuronal networks can theoretically estimate any function, regardless of its 
complexity.supervised learning is a method of determining the correct Y for a fresh X by 
learning a function that translates a given X into a specified Y. But what are the differences 
between neural networks and other methods of machine learning? The answer is based on 
the Inductive Bias phenomenon, a psychological phenomenon. 

Machine learning models are built on assumptions such as the one where X and Y are 
related. An Inductive Bias of linear regression is the linear relationship between X and Y. In 
this way, a line or hyperplane gets fitted to the data. 

When X and Y have a complex relationship, it can get difficult for a Linear Regression 
method to predict Y. For this situation, the curve must be multi-dimensional or approximate 
to the relationship. 

A manual adjustment is needed sometimes based on the complexity of the function and the 
number of layers within the network. In most cases, trial and error methods combined with 
experience get used to accomplishing this. Hence, this is the reason these parameters are 
called hyperparameters. 

What is a feed forward neural network: 

Feed forward neural networks are artificial neural networks in which nodes do not form 
loops. This type of neural network is also known as a multi-layer neural network as all 
information is only passed forward. 

During data flow, input nodes receive data, which travel through hidden layers, and exit 
output nodes. No links exist in the network that could get used to by sending information 
back from the output node. 

A feed forward neural network approximates functions in the following way: 

 An algorithm calculates classifiers by using the formula y = f* (x). 
 Input x is therefore assigned to category y. 
 According to the feed forward model, y = f (x; θ). This value determines the 

closest approximation of the function. 

Feed forward neural networks serve as the basis for object detection in photos, as shown in 
the Google Photos app. 

https://www.turing.com/kb/importance-of-artificial-neural-networks-in-artificial-intelligence
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What is the working principle of a feed forward neural network: 

 

When the feed forward neural network gets simplified, it can appear as a single layer 
perceptron. 

This model multiplies inputs with weights as they enter the layer. Afterward, the weighted 
input values get added together to get the sum. As long as the sum of the values rises above 
a certain threshold, set at zero, the output value is usually 1, while if it falls below the 
threshold, it is usually -1. 

As a feed forward neural network model, the single-layer perceptron often gets used for 
classification. Machine learning can also get integrated into single-layer perceptrons. 
Through training, neural networks can adjust their weights based on a property called the 
delta rule, which helps them compare their outputs with the intended values. 

As a result of training and learning, gradient descent occurs. Similarly, multi-layered 
perceptrons update their weights. But, this process gets known as back-propagation. If this 
is the case, the network's hidden layers will get adjusted according to the output values 
produced by the final layer. 

Layers of feed forward neural network 
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 Input layer: 

The neurons of this layer receive input and pass it on to the other layers of the 
network. Feature or attribute numbers in the dataset must match the number of 
neurons in the input layer. 

 Output layer: 

According to the type of model getting built, this layer represents the forecasted 
feature. 

 Hidden layer: 

Input and output layers get separated by hidden layers. Depending on the type of 
model, there may be several hidden layers. 

There are several neurons in hidden layers that transform the input before actually 
transferring it to the next layer. This network gets constantly updated with weights in 
order to make it easier to predict. 

 Neuron weights: 

Neurons get connected by a weight, which measures their strength or magnitude. 
Similar to linear regression coefficients, input weights can also get compared. 

Weight is normally between 0 and 1, with a value between 0 and 1. 

 Neurons: 

Artificial neurons get used in feed forward networks, which later get adapted from 
biological neurons. A neural network consists of artificial neurons. 

Neurons function in two ways: first, they create weighted input sums, and second, 
they activate the sums to make them normal. 

Activation functions can either be linear or nonlinear. Neurons have weights based 
on their inputs. During the learning phase, the network studies these weights. 

 Activation Function: 

Neurons are responsible for making decisions in this area. 

According to the activation function, the neurons determine whether to make a linear 
or nonlinear decision. Since it passes through so many layers, it prevents the 
cascading effect from increasing neuron outputs. 

An activation function can be classified into three major categories: sigmoid, Tanh, 
and Rectified Linear Unit (ReLu). 

 Sigmoid: 
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Input values between 0 and 1 get mapped to the output values. 

 Tanh: 

A value between -1 and 1 gets mapped to the input values. 

 Rectified linear Unit: 

Only positive values are allowed to flow through this function. Negative values get 
mapped to 0. 

Function in feed forward neural network 

 

Cost function 

In a feed forward neural network, the cost function plays an important role. The 
categorized data points are little affected by minor adjustments to weights and 
biases. 

Thus, a smooth cost function can get used to determine a method of adjusting 
weights and biases to improve performance. 

Following is a definition of the mean square error cost function: 

 

Where, 

w = the weights gathered in the network 
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b = biases 

n = number of inputs for training 

a = output vectors 

x = input 

‖v‖ = vector v's normal length 

Loss function 

The loss function of a neural network gets used to determine if an adjustment needs 
to be made in the learning process. 

Neurons in the output layer are equal to the number of classes. Showing the 
differences between predicted and actual probability distributions. Following is the 
cross-entropy loss for binary classification. 

 

As a result of multiclass categorization, a cross-entropy loss occurs: 

 

Gradient learning algorithm 

In the gradient descent algorithm, the next point gets calculated by scaling the 
gradient at the current position by a learning rate. Then subtracted from the current 
position by the achieved value. 

To decrease the function, it subtracts the value (to increase, it would add). As an 
example, here is how to write this procedure: 
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The gradient gets adjusted by the parameter η, which also determines the step size. 
Performance is significantly affected by the learning rate in machine learning. 

Output units 

In the output layer, output units are those units that provide the desired output or 
prediction, thereby fulfilling the task that the neural network needs to complete. 

There is a close relationship between the choice of output units and the cost 
function. Any unit that can serve as a hidden unit can also serve as an output unit in 
a neural network. 

Advantages of feed forward Neural Networks 

 Machine learning can be boosted with feed forward neural networks' 
simplified architecture. 

 Multi-network in the feed forward networks operate independently, with a 
moderated intermediary. 

 Complex tasks need several neurons in the network. 
 Neural networks can handle and process nonlinear data easily compared 

to perceptrons and sigmoid neurons, which are otherwise complex. 
 A neural network deals with the complicated problem of decision 

boundaries. 
 Depending on the data, the neural network architecture can vary. For 

example, convolutional neural networks (CNNs) perform exceptionally 
well in image processing, whereas recurrent neural networks (RNNs) 
perform well in text and voice processing. 

 Neural networks need graphics processing units (GPUs) to handle large 
datasets for massive computational and hardware performance. Several 
GPUs get used widely in the market, including Kaggle Notebooks and 
Google Collab Notebooks. 

 

https://www.turing.com/kb/recurrent-neural-networks-and-lstm
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Applications of feed forward neural networks: 

 

There are many applications for these neural networks. The following are a few of them. 

Physiological feed forward system 

It is possible to identify feed forward management in this situation because the central 
involuntary regulates the heartbeat before exercise. 

Gene regulation and feed forward 

Detecting non-temporary changes to the atmosphere is a function of this motif as a feed 
forward system. You can find the majority of this pattern in the illustrious networks. 

Automation and machine management 

Automation control using feed forward is one of the disciplines in automation. 

Parallel feed forward compensation with derivative 

An open-loop transfer converts non-minimum part systems into minimum part systems using this 
technique. 

Understanding the math behind neural networks 

Typical deep learning algorithms are neural networks (NNs). As a result of their unique 
structure, their popularity results from their 'deep' understanding of data. 

Furthermore, NNs are flexible in terms of complexity and structure. Despite all the advanced 
stuff, they can't work without the basic elements: they may work better with the advanced 
stuff, but the underlying structure remains the same 

Deep Feed- forward networks: 
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NNs get constructed similarly to our biological neurons, and they resemble the 
following: 

 

Neurons are hexagons in this image. In neural networks, neurons get arranged into 
layers: input is the first layer, and output is the last with the hidden layer in the 
middle. 

NN consists of two main elements that compute mathematical operations. Neurons 
calculate weighted sums using input data and synaptic weights since neural 
networks are just mathematical computations based on synaptic links. 

The following is a simplified visualization: 

 

In a matrix format, it looks as follows: 

 

In the third step, a vector of ones gets multiplied by the output of our hidden layer: 
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Using the output value, we can calculate the result. Understanding these fundamental 
concepts will make building NN much easier, and you will be amazed at how quickly you can 
do it. Every layer's output becomes the following layer's input. 

The architecture of the network 

In a network, the architecture refers to the number of hidden layers and units in each layer 
that make up the network. 

A feed forward network based on the Universal Approximation Theorem must have a 
"squashing" activation function at least on one hidden layer. 

The network can approximate any Borel measurable function within a finite-
dimensional space with at least some amount of non-zero error when there are 
enough hidden units. 

It simply states that we can always represent any function using the multi-layer 
perceptron (MLP), regardless of what function we try to learn. 

Thus, we now know there will always be an MLP to solve our problem, but there is 
no specific method for finding it. 

It is impossible to say whether it will be possible to solve the given problem if we use 
N layers with M hidden units. 

Research is still ongoing, and for now, the only way to determine this configuration is 
by experimenting with it. 

While it is challenging to find the appropriate architecture, we need to try many 
configurations before finding the one that can represent the target function. 

There are two possible explanations for this. Firstly, the optimization algorithm may 
not find the correct parameters, and secondly, the training algorithms may use the 
wrong function because of overfitting. 
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What is backpropagation in feed forward neural network? 

Backpropagation is a technique based on gradient descent. Each stage of a gradient 
descent process involves iteratively moving a function in the opposite direction of its 
gradient (the slope). 

The goal is to reduce the cost function given the training data while learning a neural 
network. Network weights and biases of all neurons in each layer determine the cost 
function. Backpropagation gets used to calculate the gradient of the cost function 
iteratively. And then update weights and biases in the opposite direction to reduce 
the gradient. 

We must define the error of the backpropagation formula to specify i-th neuron in the 

i-th layer of a network for the j-th training. Example as follows (in which 
 represents the weighted input to the neuron, and L represents the loss.) 

 

In backpropagation formulas, the error is defined as above: 

Below is the full derivation of the formulas. For each formula below, L stands for the 

output layer, g for the activation function, ∇ the gradient, W[l]T layer l weights 
transposed. 

A proportional activation of neuron i at layer l based on bli bias from layer i to layer i, 
w[k] weight from layer l to layer l-1, and ak−1 activation of neuron k at layer l-1 for 
training example j. 

 

The first equation shows how to calculate the error at the output layer for sample j. 
Following that, we can use the second equation to calculate the error in the layer just 
before the output layer. 

https://www.turing.com/kb/j
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Based on the error values for the next layer, the second equation can calculate the 
error in any layer. Because this algorithm calculates errors backward, it is known as 
backpropagation. 

For sample j, we calculate the gradient of the loss function by taking the third and 
fourth equations and dividing them by the biases and weights. 

We can update biases and weights by averaging gradients of the loss function 
relative to biases and weights for all samples using the average gradients. 

The process is known as batch gradient descent. We will have to wait a long time if 
we have too many samples. 

If each sample has a gradient, it is possible to update the biases/weights 
accordingly. The process is known as stochastic gradient descent. 

Even though this algorithm is faster than batch gradient descent, it does not yield a 
good estimate of the gradient calculated using a single sample. 

It is possible to update biases and weights based on the average gradients of 
batches. It gets referred to as mini-batch gradient descent and gets preferred over 
the other two. 

Stochastic Gradient Descent (SGD): 
Gradient Descent is an iterative optimization process that searches for an objective 

function’s optimum value (Minimum/Maximum). It is one of the most used methods for 

changing a model’s parameters in order to reduce a cost function in machine learning 

projects.   

The primary goal of gradient descent is to identify the model parameters that provide the 

maximum accuracy on both training and test datasets. In gradient descent, the gradient is a 

vector pointing in the general direction of the function’s steepest rise at a particular point. 

The algorithm might gradually drop towards lower values of the function by moving in the 

opposite direction of the gradient, until reaching the minimum of the function. 

Types of Gradient Descent:  

Typically, there are three types of Gradient Descent:   

1. Batch Gradient Descent 

2. Stochastic Gradient Descent 

3. Mini-batch Gradient Descent 

In this article, we will be discussing Stochastic Gradient Descent (SGD).  

Stochastic Gradient Descent (SGD): 
Stochastic Gradient Descent (SGD) is a variant of the Gradient Descent algorithm that is 

used for optimizing machine learning models. It addresses the computational inefficiency 

of traditional Gradient Descent methods when dealing with large datasets in machine 

learning projects. 

In SGD, instead of using the entire dataset for each iteration, only a single random training 

example (or a small batch) is selected to calculate the gradient and update the model 

https://www.geeksforgeeks.org/difference-between-batch-gradient-descent-and-stochastic-gradient-descent/
https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/
https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/
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parameters. This random selection introduces randomness into the optimization process, 

hence the term “stochastic” in stochastic Gradient Descent 

The advantage of using SGD is its computational efficiency, especially when dealing with 

large datasets. By using a single example or a small batch, the computational cost per 

iteration is significantly reduced compared to traditional Gradient Descent methods that 

require processing the entire dataset. 

Stochastic Gradient Descent Algorithm : 

 Initialization: Randomly initialize the parameters of the model. 

 Set Parameters: Determine the number of iterations and the learning rate 

(alpha) for updating the parameters. 

 Stochastic Gradient Descent Loop: Repeat the following steps until the model 

converges or reaches the maximum number of iterations:  

                  a. Shuffle the training dataset to introduce randomness.  

                 b. Iterate over each training example (or a small batch) in the shuffled 

order.  

                  c. Compute the gradient of the cost function with respect to the model 

parameters using the current training  example (or batch).                    

                 d. Update the model parameters by taking a step in the direction of the 

negative gradient, scaled by the learning rate.  

                  e. Evaluate the convergence criteria, such as the difference in the cost 

function between iterations of the gradient. 

 Return Optimized Parameters: Once the convergence criteria are met or 

the maximum number of iterations is reached, return the optimized model 

parameters. 

In SGD, since only one sample from the dataset is chosen at random for each 

iteration, the path taken by the algorithm to reach the minima is usually noisier than 

your typical Gradient Descent algorithm. But that doesn’t matter all that much 

because the path taken by the algorithm does not matter, as long as we reach the 

minimum and with a significantly shorter training time. 

Hidden Units: 

In neural networks, a hidden layer is located between the input and output 
of the algorithm, in which the function applies weights to the inputs and 
directs them through an activation function as the output. In short, the 
hidden layers perform nonlinear transformations of the inputs entered into 
the network. Hidden layers vary depending on the function of the neural 
network, and similarly, the layers may vary depending on their associated 
weights. 

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/activation-function
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How does a Hidden Layer work? 

Hidden layers, simply put, are layers of mathematical functions each 
designed to produce an output specific to an intended result. For example, 
some forms of hidden layers are known as squashing functions. These 
functions are particularly useful when the intended output of the algorithm 
is a probability because they take an input and produce an output value 
between 0 and 1, the range for defining probability. 

Hidden layers allow for the function of a neural network to be broken down 

into specific transformations of the data. Each hidden layer function is 

specialized to produce a defined output. For example, a hidden layer 

functions that are used to identify human eyes and ears may be used in 

conjunction by subsequent layers to identify faces in images. While the 

functions to identify eyes alone are not enough to independently recognize 

objects, they can function jointly within a neural network. 

Hidden Layers and Machine Learning: 

Hidden layers are very common in neural networks, however their use and 

architecture often varies from case to case. As referenced above, hidden 

layers can be separated by their functional characteristics. For example, in 

a CNN used for object recognition, a hidden layer that is used to identify 

wheels cannot solely identify a car, however when placed in conjunction 

with additional layers used to identify windows, a large metallic body, and 

headlights, the neural network can then make predictions and identify 

possible cars within visual data. 

 

Choosing Hidden Layers 

https://deepai.org/machine-learning-glossary-and-terms/probability


B.Tech –AIML   R-22 
 
 

Deep Learning 

1. Well if the data is linearly separable then you don't need any hidden 

layers at all.  

2. If data is less complex and is having fewer dimensions or features 

then neural networks with 1 to 2 hidden layers would work. 

3. If data is having large dimensions or features then to get an 

optimum solution, 3 to 5 hidden layers can be used.  

It should be kept in mind that increasing hidden layers would also increase the 

complexity of the model and choosing hidden layers such as 8, 9, or in two 

digits may sometimes lead to overfitting. 

Choosing Nodes in Hidden Layers 

Once hidden layers have been decided the next task is to choose the number 

of nodes in each hidden layer. 

1. The number of hidden neurons should be between the size of the 

input layer and the output layer. 

2. The most appropriate number of hidden neurons is 

Sqrt (input layer nodes * output layer nodes) 

1. The number of hidden neurons should keep on decreasing in 

subsequent layers to get more and more close to pattern and 

feature extraction and to identify the target class. 

These above algorithms are only a general use case and they can be moulded 

according to use case. Sometimes the number of nodes in hidden layers can 

increase also in subsequent layers and the number of hidden layers can also 

be more than the ideal case. 

This whole depends upon the use case and problem statement that we are 

dealing with. 

Architecture Design: 

Types of neural networks models are listed below: 

The nine types of neural networks are: 
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 Perceptron 

 Feed Forward Neural Network 

 Multilayer Perceptron 

 Convolutional Neural Network 

 Radial Basis Functional Neural Network 

 Recurrent Neural Network 

 LSTM – Long Short-Term Memory 

 Sequence to Sequence Models 

 Modular Neural Network 

 

 

An Introduction to Artificial Neural Network 

Neural networks represent deep learning using artificial intelligence. Certain application 

scenarios are too heavy or out of scope for traditional machine learning algorithms to handle. 

As they are commonly known, Neural Network pitches in such scenarios and fills the 

gap. Also, enroll in the neural networks and deep learning course and enhance your skills 

today. 

Artificial neural networks are inspired by the biological neurons within the human body 

which activate under certain circumstances resulting in a related action performed by the 

body in response. Artificial neural nets consist of various layers of interconnected artificial 

neurons powered by activation functions that help in switching them ON/OFF. Like 

traditional machine algorithms, here too, there are certain values that neural nets learn in the 

training phase. 

Briefly, each neuron receives a multiplied version of inputs and random weights, which is 

then added with a static bias value (unique to each neuron layer); this is then passed to an 

appropriate activation function which decides the final value to be given out of the neuron. 

There are various activation functions available as per the nature of input values. Once the 

output is generated from the final neural net layer, loss function (input vs output) is 

https://www.mygreatlearning.com/academy/learn-for-free/courses/multilayer-perceptron?gl_blog_id=8851
https://www.mygreatlearning.com/blog/what-is-deep-learning/
https://www.mygreatlearning.com/artificial-intelligence/courses
https://www.mygreatlearning.com/academy/learn-for-free/courses/introduction-to-neural-networks-and-deep-learning?gl_blog_id=8851
https://www.mygreatlearning.com/blog/clustering-algorithms-in-machine-learning/
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calculated, and backpropagation is performed where the weights are adjusted to make the loss 

minimum. Finding optimal values of weights is what the overall operation focuses around. 

Please refer to the following for better understanding- 

 

 

Weights are numeric values that are multiplied by inputs. In backpropagation, they are 

modified to reduce the loss. In simple words, weights are machine learned values from 

Neural Networks. They self-adjust depending on the difference between predicted outputs vs 

training inputs. 

Activation Function is a mathematical formula that helps the neuron to switch ON/OFF. 

 

 Input layer represents dimensions of the input vector. 

 Hidden layer represents the intermediary nodes that divide the input space into 

regions with (soft) boundaries. It takes in a set of weighted input and produces 

output through an activation function. 

 Output layer represents the output of the neural network. 

Backpropagation: 

Backpropagation Process in Deep Neural 
Network 
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Backpropagation is one of the important concepts of a neural network. Our task is 

to classify our data best. For this, we have to update the weights of parameter and 

bias, but how can we do that in a deep neural network? In the linear regression 

model, we use gradient descent to optimize the parameter. Similarly here we also use 

gradient descent algorithm using Backpropagation. 

For a single training example, Backpropagation algorithm calculates the gradient of 

the error function. Backpropagation can be written as a function of the neural 

network. Backpropagation algorithms are a set of methods used to efficiently train 

artificial neural networks following a gradient descent approach which exploits the 

chain rule. 

The main features of Backpropagation are the iterative, recursive and efficient 

method through which it calculates the updated weight to improve the network until 

it is not able to perform the task for which it is being trained. Derivatives of the 

activation function to be known at network design time is required to 

Backpropagation. 

Now, how error function is used in Backpropagation and how Backpropagation 

works? Let start with an example and do it mathematically to understand how exactly 

updates the weight using Backpropagation. 

 

Input values 

X1=0.05 

X2=0.10 
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Initial weight 

W1=0.15     w5=0.40 

W2=0.20     w6=0.45 

W3=0.25     w7=0.50 

W4=0.30     w8=0.55 

Bias Values 

b1=0.35     b2=0.60 

Target Values 

T1=0.01 

T2=0.99 

Now, we first calculate the values of H1 and H2 by a forward pass. 

Forward Pass 

To find the value of H1 we first multiply the input value from the weights as 

                              H1=x1×w1+x2×w2+b1 

                        H1=0.05×0.15+0.10×0.20+0.35 

                                    H1=0.3775 

To calculate the final result of H1, we performed the sigmoid function as 

 

We will calculate the value of H2 in the same way as H1 

                              H2=x1×w3+x2×w4+b1 

                        H2=0.05×0.25+0.10×0.30+0.35 

                                    H2=0.3925 

To calculate the final result of H1, we performed the sigmoid function as 
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Now, we calculate the values of y1 and y2 in the same way as we calculate the H1 

and H2. 

To find the value of y1, we first multiply the input value i.e., the outcome of H1 and 

H2 from the weights as 

                              y1=H1×w5+H2×w6+b2 

                        y1=0.593269992×0.40+0.596884378×0.45+0.60 

                                    y1=1.10590597 

To calculate the final result of y1 we performed the sigmoid function as 

 

We will calculate the value of y2 in the same way as y1 

         y2=H1×w7+H2×w8+b2 

                        y2=0.593269992×0.50+0.596884378×0.55+0.60 

                                    y2=1.2249214 

To calculate the final result of H1, we performed the sigmoid function as 
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Our target values are 0.01 and 0.99. Our y1 and y2 value is not matched with our 

target values T1 and T2. 

Now, we will find the total error, which is simply the difference between the outputs 

from the target outputs. The total error is calculated as 

 

So, the total error is 

 

Now, we will backpropagate this error to update the weights using a backward pass. 

Backward pass at the output layer 

To update the weight, we calculate the error correspond to each weight with the help 

of a total error. The error on weight w is calculated by differentiating total error with 

respect to w. 
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We perform backward process so first consider the last weight w5 as 

 

From equation two, it is clear that we cannot partially differentiate it with respect to 

w5 because there is no any w5. We split equation one into multiple terms so that we 

can easily differentiate it with respect to w5 as 

 

Now, we calculate each term one by one to differentiate Etotal with respect to w5 as 

 

Putting the value of e-y in equation (5) 
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So, we put the values of  in equation no (3) to find the final 

result. 

 

Now, we will calculate the updated weight w5new with the help of the following 

formula 

 

In the same way, we calculate w6new,w7new, and w8new and this will give us the 

following values 

                        w5new=0.35891648 

                        w6new=408666186 
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                        w7new=0.511301270 

                        w8new=0.561370121 

Backward pass at Hidden layer 

Now, we will backpropagate to our hidden layer and update the weight w1, w2, w3, 

and w4 as we have done with w5, w6, w7, and w8 weights. 

We will calculate the error at w1 as 

 

From equation (2), it is clear that we cannot partially differentiate it with respect to 

w1 because there is no any w1. We split equation (1) into multiple terms so that we 

can easily differentiate it with respect to w1 as 

 

Now, we calculate each term one by one to differentiate Etotal with respect to w1 as 

 

We again split this because there is no any H1final term in Etoatal as 

 

 will again split because in E1 and E2 there is no H1 term. Splitting 

is done as 
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We again Split both  because there is no any y1 and y2 term in E1 and E2. 

We split it as 

 

Now, we find the value of  by putting values in equation (18) and (19) as 

From equation (18) 

 

From equation (8) 

 

From equation (19) 
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Putting the value of e-y2 in equation (23) 

 

From equation (21) 
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Now from equation (16) and (17) 

 

Put the value of  in equation (15) as 

 

We have we need to figure out as 
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Putting the value of e-H1 in equation (30) 

 

We calculate the partial derivative of the total net input to H1 with respect to w1 the 

same as we did for the output neuron: 

 

So, we put the values of  in equation (13) to find the final 

result. 
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Now, we will calculate the updated weight w1new with the help of the following 

formula 

 

In the same way, we calculate w2new,w3new, and w4 and this will give us the following 

values 

                        w1new=0.149780716 

                        w2new=0.19956143 

                        w3new=0.24975114 

                        w4new=0.29950229 

We have updated all the weights. We found the error 0.298371109 on the network 

when we fed forward the 0.05 and 0.1 inputs. In the first round of Backpropagation, 

the total error is down to 0.291027924. After repeating this process 10,000, the total 

error is down to 0.0000351085. At this point, the outputs neurons generate 

0.159121960 and 0.984065734 i.e., nearby our target value when we feed forward the 

0.05 and 0.1. 

Deep learning frameworks and libraries (e.g., TensorFlow/Keras, 

PyTorch). 
Deep Learning Frameworks 

Keras, TensorFlow and PyTorch are among the top three 
frameworks that are preferred by Data Scientists as well as 
beginners in the field of  Deep Learning.This comparison on Keras vs 
TensorFlow vs PyTorch will provide you with a crisp knowledge about 
the top Deep Learning Frameworks and help you find out which one 
is suitable for you. In this blog you will get a complete insight into the 
above three frameworks in the following sequence: 

 Introduction to Keras, TensorFlow & PyTorch 

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#introduction
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 Comparison Factors 
 Final Verdict 

Introduction 
Keras 

 

Keras is an open source neural network library written in Python. It is capable of 
running on top of TensorFlow. It is designed to enable fast experimentation 
with deep neural networks. 

TensorFlow 
 

TensorFlow is an open-source software library for dataflow programming across a 
range of tasks. It is a symbolic math library that is used for machine 
learning applications like neural networks. 

PyTorch 
 

PyTorch is an open source machine learning library for Python, based on Torch. It 
is used for applications such as natural language processing and was developed 
by Facebook’s AI research group. 

Comparison Factors 
All the three frameworks are related to each other and also have certain basic 
differences that distinguishes them from one another. 

So lets have a look at the parameters that distinguish them: 

 Level of API 

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#comparison
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#final
https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/tensorflow-tutorial/
https://www.edureka.co/blog/pytorch-tutorial/
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#level
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 Speed 
 Architecture 
 Debugging 
 Dataset 
 Popularity 

Level of API 
 

Keras is a high-level API capable of running on top of TensorFlow, CNTK and 
Theano. It has gained favor for its ease of use and syntactic simplicity, facilitating 
fast development. 

TensorFlow is a framework that provides both high and low level APIs. Pytorch, on 
the other hand, is a lower-level API focused on direct work with array expressions. It 
has gained immense interest in the last year, becoming a preferred solution for 
academic research, and applications of deep learning requiring optimizing custom 
expressions. 

Speed 
 

The performance is comparatively slower in Keras whereas Tensorflow and 
PyTorch provide a similar pace which is fast and suitable for high performance. 

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#speed
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#architecture
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#debugging
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#dataset
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#popularity
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Architecture 
 

Keras has a simple architecture. It is more readable and concise . Tensorflow on 
the other hand is not very easy to use even though it provides Keras as a framework 
that makes work easier. PyTorch has a complex architecture and the readability is 
less when compared to Keras. 

Debugging 
 

In keras, there is usually very less frequent need to debug simple networks. But in 
case of Tensorflow, it is quite difficult to perform debugging. Pytorch on the other 
hand has better debugging capabilities as compared to the other two. 
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Dataset 
 

Keras is usually used for small datasets as it is comparitively slower. On the other 
hand, TensorFlow and PyTorch are used for high performance models 
and large datasets that require fast execution. 

Popularity 
 

With the increasing demand in the field of Data Science, there has been an 
enormous growth of Deep learning technology in the industry. With this, all the 
three frameworks have gained quite a lot of popularity. Keras tops the list followed 
by TensorFlow and PyTorch. It has gained immense popularity due to 
its simplicity when compared to the other two. 

These were the parameters that distinguish all the three frameworks but there is no 
absolute answer to which one is better. The choice ultimately comes down to  

 Technical background 
 Requirements and 
 Ease of Use 
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Final Verdict 
Now coming to the final verdict of Keras vs TensorFlow vs PyTorch let’s have a look 
at the situations that are most preferable for each one of these three deep learning 
frameworks 

 

Keras is most suitable for: 

 Rapid Prototyping 
 Small Dataset 
 Multiple back-end support 

 

TensorFlow is most suitable for: 

 Large Dataset 
 High Performance 
 Functionality 
 Object Detection 

 

PyTorch is most suitable for: 

 Flexibility 
 Short Training Duration 
 Debugging capabilities 

Now with this, we come to an end of this comparison on Keras vs TensorFlow vs 
PyTorch. I Hope you guys enjoyed this article and understood which Deep Learning 
Framework is most suitable for you. 

Now that you have understood the comparison between Keras, TensorFlow and 
PyTorch, check out the AI and Deep Learning With Tensorflow by Edureka, a 
trusted online learning company with a network of more than 250,000 satisfied 
learners spread across the globe. This Certification Training is curated by industry 

https://www.edureka.co/blog/tensorflow-object-detection-tutorial/
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professionals as per the industry requirements & demands. You will master concepts 
such as SoftMax function, Autoencoder Neural Networks, Restricted Boltzmann 
Machine (RBM) and work with libraries like Keras & TFLearn. 

Also, discover your full abilities in becoming an AI and ML professional through 
our Artificial Intelligence Course. Learn about various AI-related technologies like 
Machine Learning, Deep Learning, Computer Vision, Natural Language Processing, 
Speech Recognition, and Reinforcement learning. 

 

 

UNIT-II: 
CONVOLUTION NEURAL NETWORK (CNN): Introduction to CNNs 

and their applications in computer vision, CNN basic architecture, 

Activation functions-sigmoid, tanh, ReLU, Softmax layer, Types of 

pooling layers, Training of CNN in TensorFlow, various popular CNN 

architectures: VGG, Google Net, ResNet etc, Dropout, Normalization, 

Data augmentation 

Introduction to CNNs and their applications in computer vision: 

Deep Learning has proved to be a very powerful tool because of its ability 

to handle large amounts of data. The interest to use hidden layers has 

surpassed traditional techniques, especially in pattern recognition. One of 

the most popular deep neural networks is Convolutional Neural Networks 

(also known as CNN or ConvNet) in deep learning, especially when it 

comes to Computer Vision applications. 

https://www.edureka.co/advanced-artificial-intelligence-course-python
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Since the 1950s, the early days of AI, researchers have struggled to make 

a system that can understand visual data. In the following years, this field 

came to be known as Computer Vision. In 2012, computer vision took a 

quantum leap when a group of researchers from the University of Toronto 

developed an AI model that surpassed the best image recognition 

algorithms, and that too by a large margin. 

The AI system, which became known as AlexNet (named after its main 

creator, Alex Krizhevsky), won the 2012 ImageNet computer vision contest 

with an amazing 85 percent accuracy. The runner-up scored a modest 74 

percent on the test. 

At the heart of AlexNet was Convolutional Neural Networks a special type 

of neural network that roughly imitates human vision.  

Background of CNNs 

CNN’s were first developed and used around the 1980s. The most that a 

CNN could do at that time was recognize handwritten digits. It was mostly 

used in the postal sectors to read zip codes, pin codes, etc. The important 

thing to remember about any deep learning model is that it requires a large 

amount of data to train and also requires a lot of computing resources. This 

was a major drawback for CNNs at that period and hence CNNs were only 
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limited to the postal sectors and it failed to enter the world of machine 

learning. 

 

In the past few decades, Deep Learning has proved to be a very powerful tool 
because of its ability to handle large amounts of data. The interest to use 
hidden layers has surpassed traditional techniques, especially in pattern 
recognition. One of the most popular deep neural networks is Convolutional 
Neural Networks (also known as CNN or ConvNet) in deep learning, especially 
when it comes to Computer Vision applications. 

 

Since the 1950s, the early days of AI, researchers have struggled to make a system 

that can understand visual data. In the following years, this field came to be known 

as Computer Vision. In 2012, computer vision took a quantum leap when a group 

of researchers from the University of Toronto developed an AI model that 

surpassed the best image recognition algorithms, and that too by a large margin. 

The AI system, which became known as AlexNet (named after its main creator, 

Alex Krizhevsky), won the 2012 ImageNet computer vision contest with an 

amazing 85 percent accuracy. The runner-up scored a modest 74 percent on the 

test. 

At the heart of AlexNet was Convolutional Neural Networks a special type of 

neural network that roughly imitates human vision. Over the years CNNs have 

become a very important part of many Computer Vision applications and hence a 
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part of any computer vision course online. So let’s take a look at the workings of 

CNNs or CNN algorithm in deep learning. 

 Background of CNNs 

 What Is a CNN? 

 How does it work? 

 What Is a Pooling Layer? 

 Limitations of CNNs 

 Frequently Asked Questions 

Background of CNNs 

CNN’s were first developed and used around the 1980s. The most that a CNN 

could do at that time was recognize handwritten digits. It was mostly used in the 

postal sectors to read zip codes, pin codes, etc. The important thing to remember 

about any deep learning model is that it requires a large amount of data to train and 

also requires a lot of computing resources. This was a major drawback for CNNs at 

that period and hence CNNs were only limited to the postal sectors and it failed to 

enter the world of machine learning. 

In 2012 Alex Krizhevsky realized that it was time to bring back the branch of deep 

learning that uses multi-layered neural networks. The availability of large sets of 

data, to be more specific ImageNet datasets with millions of labeled images and an 

abundance of computing resources enabled researchers to revive CNNs. 

What Is a CNN? 

In deep learning, a convolutional neural network (CNN/ConvNet) is a class of 

deep neural networks, most commonly applied to analyze visual imagery. Now 

when we think of a neural network we think about matrix multiplications but that 

is not the case with ConvNet. It uses a special technique called Convolution. Now 

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#81b6
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#be44
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#8ce1
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#01d2
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#d31e
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#h-frequently-asked-questions
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in mathematics convolution is a mathematical operation on two functions that 

produces a third function that expresses how the shape of one is modified by the 

other. 

Bottom line is that the role of the ConvNet is to reduce the images into a 

form that is easier to process, without losing features that are critical for 

getting a good prediction. 

How does it works? 

Before we go to the working of CNN’s let’s cover the basics such as what is 

an image and how is it represented. An RGB image is nothing but a matrix 

of pixel values having three planes whereas a grayscale image is the same 

but it has a single plane. Take a look at this image to understand more. 
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For simplicity, let’s stick with grayscale images as we try to understand how 

CNNs work. 

 

The above image shows what a convolution is. We take a filter/kernel(3×3 

matrix) and apply it to the input image to get the convolved feature. This 

convolved feature is passed on to the next layer. 
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In the case of RGB color, channel take a look at this animation to 

understand its working 

 

Convolutional neural networks are composed of multiple layers of artificial 

neurons. Artificial neurons, a rough imitation of their biological counterparts, 
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are mathematical functions that calculate the weighted sum of multiple 

inputs and outputs an activation value. When you input an image in a 

ConvNet, each layer generates several activation functions that are passed 

on to the next layer. 

The first layer usually extracts basic features such as horizontal or diagonal 

edges. This output is passed on to the next layer which detects more 

complex features such as corners or combinational edges. As we move 

deeper into the network it can identify even more complex features such as 

objects, faces, etc. 
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Based on the activation map of the final convolution layer, the classification 

layer outputs a set of confidence scores (values between 0 and 1) that 
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specify how likely the image is to belong to a “class.” For instance, if you 

have a ConvNet that detects cats, dogs, and horses, the output of the final 

layer is the possibility that the input image contains any of those animals. 

 

What Is a Pooling Layer? 

Similar to the Convolutional Layer, the Pooling layer is responsible for 

reducing the spatial size of the Convolved Feature. This is to decrease the 

computational power required to process the data by reducing the 

dimensions. There are two types of pooling average pooling and max 

pooling. I’ve only had experience with Max Pooling so far, I haven’t faced 

any difficulties. 
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So what we do in Max Pooling is we find the maximum value of a pixel from 

a portion of the image covered by the kernel. Max Pooling also performs as 

a Noise Suppressant. It discards the noisy activations altogether and also 

performs de-noising along with dimensionality reduction. 

On the other hand, Average Pooling returns the average of all the 

values from the portion of the image covered by the Kernel. Average 

Pooling simply performs dimensionality reduction as a noise suppressing 

mechanism. Hence, we can say that Max Pooling performs a lot better 

than Average Pooling. 
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Benefits of Using CNNs for Machine and Deep Learning  

Deep learning is a form of machine learning that requires a neural network with a minimum of three layers. 

Networks with multiple layers are more accurate than single-layer networks. Deep learning applications 

often use CNNs or RNNs (recurrent neural networks).  

The CNN architecture is especially useful for image recognition and image classification, as well as other 

computer vision tasks because they can process large amounts of data and produce highly accurate 

predictions. CNNs can learn the features of an object through multiple iterations, eliminating the need for 

manual feature engineering tasks like feature extraction.  

It is possible to retrain a CNN for a new recognition task or build a new model based on an existing 

network with trained weights. This is known as transfer learning. This enables ML model developers to 

apply CNNs to different use cases without starting from scratch.  

What Are Convolutional Neural Networks (CNNs)? 

A Convolutional Neural Network (CNN) is a type of deep learning algorithm specifically designed for 

image processing and recognition tasks. Compared to alternative classification models, CNNs require less 

preprocessing as they can automatically learn hierarchical feature representations from raw input images. 

They excel at assigning importance to various objects and features within the images through 

convolutional layers, which apply filters to detect local patterns. 

The connectivity pattern in CNNs is inspired by the visual cortex in the human brain, where neurons 

respond to specific regions or receptive fields in the visual space. This architecture enables CNNs to 

effectively capture spatial relationships and patterns in images. By stacking multiple convolutional and 

pooling layers, CNNs can learn increasingly complex features, leading to high accuracy in tasks like image 

classification, object detection, and segmentation. 

Convolutional Neural Network Architecture Model  

Convolutional neural networks are known for their superiority over other artificial neural networks, given 

their ability to process visual, textual, and audio data. The CNN architecture comprises three main layers: 

convolutional layers, pooling layers, and a fully connected (FC) layer. 

There can be multiple convolutional and pooling layers. The more layers in the network, the greater the 

complexity and (theoretically) the accuracy of the machine learning model. Each additional layer that 

processes the input data increases the model’s ability to recognize objects and patterns in the data. 

The Convolutional Layer 

Convolutional layers are the key building block of the network, where most of the computations are carried 

out. It works by applying a filter to the input data to identify features. This filter, known as a feature 

detector, checks the image input’s receptive fields for a given feature. This operation is referred to as 

convolution.  
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The filter is a two-dimensional array of weights that represents part of a 2-dimensional image. A filter is 

typically a 3×3 matrix, although there are other possible sizes. The filter is applied to a region within the 

input image and calculates a dot product between the pixels, which is fed to an output array. The filter then 

shifts and repeats the process until it has covered the whole image. The final output of all the filter 

processes is called the feature map.  

The CNN typically applies the ReLU (Rectified Linear Unit) transformation to each feature map after 

every convolution to introduce nonlinearity to the ML model. A convolutional layer is typically followed 

by a pooling layer. Together, the convolutional and pooling layers make up a convolutional block. 

Additional convolution blocks will follow the first block, creating a hierarchical structure with later layers 

learning from the earlier layers. For example, a CNN model might train to detect cars in images. Cars can 

be viewed as the sum of their parts, including the wheels, boot, and windscreen. Each feature of a car 

equates to a low-level pattern identified by the neural network, which then combines these parts to create a 

high-level pattern.  

The Pooling Layers 

A pooling or down sampling layer reduces the dimensionality of the input. Like a convolutional operation, 

pooling operations use a filter to sweep the whole input image, but it doesn’t use weights. The filter instead 

uses an aggregation function to populate the output array based on the receptive field’s values.  

There are two key types of pooling: 

 Average pooling: The filter calculates the receptive field’s average value when it scans the input. 

 Max pooling: The filter sends the pixel with the maximum value to populate the output array. 

This approach is more common than average pooling.  

Pooling layers are important despite causing some information to be lost, because they help reduce the 

complexity and increase the efficiency of the CNN. It also reduces the risk of overfitting.  

The Fully Connected Layer 

The final layer of a CNN is a fully connected layer.  

The FC layer performs classification tasks using the features that the previous layers and filters extracted. 

Instead of ReLu functions, the FC layer typically uses a softmax function that classifies inputs more 

appropriately and produces a probability score between 0 and 1. 

(OR) 

Basic Architecture of CNN: 

Basic Architecture 

There are two main parts to a CNN architecture 
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 A convolution tool that separates and identifies the various features 

of the image for analysis in a process called as Feature Extraction.  

 The network of feature extraction consists of many pairs of 

convolutional or pooling layers.  

 A fully connected layer that utilizes the output from the convolution 

process and predicts the class of the image based on the features 

extracted in previous stages. 

 This CNN model of feature extraction aims to reduce the number of 

features present in a dataset. It creates new features which 

summarises the existing features contained in an original set of 

features. There are many CNN layers as shown in the CNN 

architecture diagram. 
Convolution Layers  

There are three types of layers that make up the CNN which are the 

convolutional layers, pooling layers, and fully-connected (FC) layers. When 

these layers are stacked, a CNN architecture will be formed. In addition to 

these three layers, there are two more important parameters which are the 

dropout layer and the activation function which are defined below. 

 

1. Convolutional Layer 

This layer is the first layer that is used to extract the various features from 

the input images. In this layer, the mathematical operation of convolution is 

performed between the input image and a filter of a particular size MxM. By 

sliding the filter over the input image, the dot product is taken between the 

filter and the parts of the input image with respect to the size of the filter 

(MxM). 

The output is termed as the Feature map which gives us information about 

the image such as the corners and edges. Later, this feature map is fed to 

other layers to learn several other features of the input image. 

The convolution layer in CNN passes the result to the next layer once 

applying the convolution operation in the input. Convolutional layers in 
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CNN benefit a lot as they ensure the spatial relationship between the 

pixels is intact. 

2. Pooling Layer 

In most cases, a Convolutional Layer is followed by a Pooling Layer. The 

primary aim of this layer is to decrease the size of the convolved feature 

map to reduce the computational costs. This is performed by decreasing the 

connections between layers and independently operates on each feature 

map. Depending upon method used, there are several types of Pooling 

operations. It basically summarises the features generated by a convolution 

layer. 

In Max Pooling, the largest element is taken from feature map. Average 

Pooling calculates the average of the elements in a predefined sized Image 

section. The total sum of the elements in the predefined section is computed 

in Sum Pooling. The Pooling Layer usually serves as a bridge between the 

Convolutional Layer and the FC Layer. 

This CNN model generalises the features extracted by the convolution layer, 

and helps the networks to recognise the features independently. With the 

help of this, the computations are also reduced in a network. 

3. Fully Connected Layer 

The Fully Connected (FC) layer consists of the weights and biases along with 

the neurons and is used to connect the neurons between two different 

layers. These layers are usually placed before the output layer and form the 

last few layers of a CNN Architecture. 

In this, the input image from the previous layers are flattened and fed to the 

FC layer. The flattened vector then undergoes few more FC layers where the 

mathematical functions operations usually take place. In this stage, the 

classification process begins to take place. The reason two layers are 

connected is that two fully connected layers will perform better than a 

single connected layer. These layers in CNN reduce the human supervision  
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4. Dropout 

Usually, when all the features are connected to the FC layer, it can cause 

overfitting in the training dataset. Overfitting occurs when a particular 

model works so well on the training data causing a negative impact in the 

model’s performance when used on a new data. 

To overcome this problem, a dropout layer is utilised wherein a few neurons 

are dropped from the neural network during training process resulting in 

reduced size of the model. On passing a dropout of 0.3, 30% of the nodes are 

dropped out randomly from the neural network. 

Dropout results in improving the performance of a machine learning model 

as it prevents overfitting by making the network simpler. It drops neurons 

from the neural networks during training. 

5. Activation Functions 

Finally, one of the most important parameters of the CNN model is the 

activation function. They are used to learn and approximate any kind of 

continuous and complex relationship between variables of the network. In 

simple words, it decides which information of the model should fire in the 

forward direction and which ones should not at the end of the network. 

It adds non-linearity to the network. There are several commonly used 

activation functions such as the ReLU, Softmax, tanH and the Sigmoid 

functions. Each of these functions have a specific usage. For a binary 

classification CNN model, sigmoid and softmax functions are preferred a for 

a multi-class classification, generally softmax us used. In simple terms, 

activation functions in a CNN model determine whether a neuron should be 

activated or not. It decides whether the input to the work is important or 

not to predict using mathematical operations. 

Activate functions: 
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3 Types of Neural Networks Activation 

Functions 

Now, as we’ve covered the essential concepts, let’s go over the most popular 

neural networks activation functions. 

Binary Step Function 

Binary step function depends on a threshold value that decides whether a 

neuron should be activated or not.  

The input fed to the activation function is compared to a certain threshold; if the 

input is greater than it, then the neuron is activated, else it is deactivated, 

meaning that its output is not passed on to the next hidden layer. 
 

Binary Step Function

 

Mathematically it can be represented as: 
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Here are some of the limitations of binary step function: 

 It cannot provide multi-value outputs—for example, it cannot be used for 

multi-class classification problems.  

 The gradient of the step function is zero, which causes a hindrance in the 

backpropagation process. 

Linear Activation Function 

The linear activation function, also known as "no activation," or "identity 

function" (multiplied x1.0), is where the activation is proportional to the input. 

The function doesn't do anything to the weighted sum of the input, it simply 

spits out the value it was given. 

 

Linear Activation Function 
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Mathematically it can be represented as: 

 

However, a linear activation function has two major problems : 

 It’s not possible to use backpropagation as the derivative of the function 

is a constant and has no relation to the input x.  

 All layers of the neural network will collapse into one if a linear activation 

function is used. No matter the number of layers in the neural network, 

the last layer will still be a linear function of the first layer. So, essentially, 

a linear activation function turns the neural network into just one layer. 

Non-Linear Activation Functions 

The linear activation function shown above is simply a linear regression model.  

Because of its limited power, this does not allow the model to create complex 

mappings between the network’s inputs and outputs.  

Non-linear activation functions solve the following limitations of linear activation 

functions: 

 They allow backpropagation because now the derivative function would 

be related to the input, and it’s possible to go back and understand which 

weights in the input neurons can provide a better prediction. 

 They allow the stacking of multiple layers of neurons as the output would 

now be a non-linear combination of input passed through multiple layers. 

Any output can be represented as a functional computation in a neural 

network. 



B.Tech –AIML   R-22 
 
 

Deep Learning 

Now, let’s have a look at ten different non-linear neural networks activation 

functions and their characteristics.  

 Non-Linear Neural Networks Activation 

Functions 

Sigmoid / Logistic Activation Function  

This function takes any real value as input and outputs values in the range of 0 

to 1.  

The larger the input (more positive), the closer the output value will be to 1.0, 

whereas the smaller the input (more negative), the closer the output will be to 

0.0, as shown below. 

 

Sigmoid/Logistic Activation Function 

Mathematically it can be represented as: 
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Here’s why sigmoid/logistic activation function is one of the most widely used 

functions: 

 It is commonly used for models where we have to predict the probability 

as an output. Since probability of anything exists only between the range 

of 0 and 1, sigmoid is the right choice because of its range. 

 The function is differentiable and provides a smooth gradient, i.e., 

preventing jumps in output values. This is represented by an S-shape of 

the sigmoid activation function.  

The limitations of sigmoid function are discussed below: 

 The derivative of the function is f'(x) = sigmoid(x)*(1-sigmoid(x)).  

 

The derivative of the Sigmoid Activation Function 

 

As we can see from the above Figure, the gradient values are only significant 

for range -3 to 3, and the graph gets much flatter in other regions.  

It implies that for values greater than 3 or less than -3, the function will have 

very small gradients. As the gradient value approaches zero, the network 

ceases to learn and suffers from the Vanishing gradient problem. 

 The output of the logistic function is not symmetric around zero. So the 

output of all the neurons will be of the same sign. This makes the training 

of the neural network more difficult and unstable. 

https://www.v7labs.com/training
https://www.v7labs.com/training
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Tanh Function (Hyperbolic Tangent) 

Tanh function is very similar to the sigmoid/logistic activation function, and even 

has the same S-shape with the difference in output range of -1 to 1. In Tanh, 

the larger the input (more positive), the closer the output value will be to 1.0, 

whereas the smaller the input (more negative), the closer the output will be to -

1.0. 

 

Tanh Function (Hyperbolic Tangent) 

Mathematically it can be represented as: 

 

Advantages of using this activation function are: 

 The output of the tanh activation function is Zero centered; hence we can 

easily map the output values as strongly negative, neutral, or strongly 

positive. 
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 Usually used in hidden layers of a neural network as its values lie 

between -1 to; therefore, the mean for the hidden layer comes out to be 

0 or very close to it. It helps in centering the data and makes learning for 

the next layer much easier. 

Have a look at the gradient of the tanh activation function to understand its 

limitations. 

 

Gradient of the Tanh Activation Function 

As you can see— it also faces the problem of vanishing gradients similar to the 

sigmoid activation function. Plus the gradient of the tanh function is much 

steeper as compared to the sigmoid function. 
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  Note:  Although both sigmoid and tanh face vanishing gradient issue, 

tanh is zero centered, and the gradients are not restricted to move in a 

certain direction. Therefore, in practice, tanh nonlinearity is always 

preferred to sigmoid nonlinearity. 

ReLU Function 

ReLU stands for Rectified Linear Unit.  

Although it gives an impression of a linear function, ReLU has a derivative 

function and allows for backpropagation while simultaneously making it 

computationally efficient.  

The main catch here is that the ReLU function does not activate all the neurons 

at the same time.  

The neurons will only be deactivated if the output of the linear transformation is 

less than 0. 

 

 

ReLU Activation Function 

Mathematically it can be represented as: 
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The advantages of using ReLU as an activation function are as follows: 

 Since only a certain number of neurons are activated, the ReLU function 

is far more computationally efficient when compared to the sigmoid and 

tanh functions. 

 ReLU accelerates the convergence of gradient descent towards the 

global minimum of the loss function due to its linear, non-saturating 

property. 

The limitations faced by this function are: 

 The Dying ReLU problem, which I explained below. 

 

The Dying ReLU problem 

 

The negative side of the graph makes the gradient value zero. Due to this 

reason, during the backpropagation process, the weights and biases for some 

https://www.v7labs.com/blog/pytorch-loss-functions
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neurons are not updated. This can create dead neurons which never get 

activated.  

 All the negative input values become zero immediately, which decreases 

the model’s ability to fit or train from the data properly.  

Note: For building the most reliable ML models, split your data into train, 

validation, and test sets. 

Leaky ReLU Function 

Leaky ReLU is an improved version of ReLU function to solve the Dying ReLU 

problem as it has a small positive slope in the negative area. 

 

Leaky ReLU 

Mathematically it can be represented as: 

 

 

https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
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The advantages of Leaky ReLU are same as that of ReLU, in addition to the 

fact that it does enable backpropagation, even for negative input values.  

By making this minor modification for negative input values, the gradient of the 

left side of the graph comes out to be a non-zero value. Therefore, we would no 

longer encounter dead neurons in that region.  

Here is the derivative of the Leaky ReLU function.  

 

The derivative of the Leaky ReLU function 

The limitations that this function faces include: 

 The predictions may not be consistent for negative input values.  

 The gradient for negative values is a small value that makes the learning 

of model parameters time-consuming. 

Parametric ReLU Function 

Parametric ReLU is another variant of ReLU that aims to solve the problem of 

gradient’s becoming zero for the left half of the axis.  

This function provides the slope of the negative part of the function as an 

argument a. By performing backpropagation, the most appropriate value of a is 

learnt. 
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Parametric ReLU 

 

Mathematically it can be represented as: 

 

Where "a" is the slope parameter for negative values. 

The parameterized ReLU function is used when the leaky ReLU function still 

fails at solving the problem of dead neurons, and the relevant information is not 

successfully passed to the next layer.  

This function’s limitation is that it may perform differently for different problems 

depending upon the value of slope parameter a. 
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Types of pooling Layers: 

A Convolutional neural network(CNN) is a special type of Artificial Neural Network that is 

usually used for image recognition and processing due to its ability to recognize patterns in 

images. It eliminates the need to extract features from visual data manually. It learns images 

by sliding a filter of some size on them and learning not just the features from the data but 

also keeps Translation invariance. 

The typical structure of a CNN consists of three basic layers 

1. Convolutional layer: These layers generate a feature map by sliding a filter over the input 

image and recognizing patterns in images. 

2. Pooling layers: These layers downsample the feature map to introduce Translation 

invariance, which reduces the overfitting of the CNN model. 

3. Fully Connected Dense Layer: This layer contains the same number of units as the 

number of classes and the output activation function such as “softmax” or “sigmoid” 

What are Pooling layers? 

Pooling layers are one of the building blocks of Convolutional Neural Networks. Where 

Convolutional layers extract features from images, Pooling layers consolidate the 

features learned by CNNs. Its purpose is to gradually shrink the representation’s spatial 

dimension to minimize the number of parameters and computations in the network. 

Why are Pooling layers needed? 

The feature map produced by the filters of Convolutional layers is location-dependent. For 

example, If an object in an image has shifted a bit it might not be recognizable by the 

Convolutional layer. So, it means that the feature map records the precise positions of 

features in the input. What pooling layers provide is “Translational Invariance” which makes 

the CNN invariant to translations, i.e., even if the input of the CNN is translated, the CNN 

will still be able to recognize the features in the input. 

In all cases, pooling helps to make the representation become approximately invariant to 

small translations of the input. Invariance to translation means that if we translate the input by 

a small amount, the values of most of the pooled outputs do not change — Page 342, Deep 

Learning by Ian Goodfellow, 2016. 

How do Pooling layers achieve that? A Pooling layer is added after the Convolutional 

layer(s), as seen in the structure of a CNN above. It downsamples the output of the 

Convolutional layers by sliding the filter of some size with some stride size and calculating 

the maximum or average of the input. 

There are two types of poolings that are used: 

1. Max pooling: This works by selecting the maximum value from every pool. Max Pooling retains 

the most prominent features of the feature map, and the returned image is sharper than the 

original image. 

https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/ai/deep-learning
https://towardsai.net/ai/deep-learning
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2. Average pooling: This pooling layer works by getting the average of the pool. Average pooling 

retains the average values of features of the feature map. It smoothes the image while keeping the 

essence of the feature in an image. 

Image source 

Let’s explore the working of Pooling Layers using TensorFlow. Create a NumPy array and 

reshape it. 

Max Pooling 

Create a MaxPool2D layer with pool_size=2 and strides=2. Apply the MaxPool2D layer to 

the matrix, and you will get the MaxPooled output in the tensor form. By applying it to the 

matrix, the Max pooling layer will go through the matrix by computing the max of each 2×2 

pool with a jump of 2. Print the shape of the tensor. Use tf.squeeze to remove dimensions of 

size 1 from the shape of a tensor. 

Average Pooling 

Create an AveragePooling2D layer with the same 2 pool_size and strides. Apply the 

AveragePooling2D layer to the matrix. By applying it to the matrix, the average pooling layer 

will go through the matrix by computing the average of 2×2 for each pool with a jump of 2. 

Print the shape of the matrix and Use tf.squeeze to convert the output into a readable form by 

removing all 1 size dimensions. 

The GIF here explains how these pooling layers go through the input matrix and computes 

the maximum or average for max pooling and average pooling, respectively. 

https://www.researchgate.net/figure/Toy-example-illustrating-the-drawbacks-of-max-pooling-and-average-pooling_fig2_300020038
https://towardsai.net/p/computer-vision/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd
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Max Pooling and Average Pooling being performed — Source 

Global Pooling Layers 

Global Pooling Layers often replace the classifier’s fully connected or Flatten layer. The 

model instead ends with a convolutional layer that produces as many feature maps as there 

are target classes and performs global average pooling on each of the feature maps to 

combine each feature map into a single value. 

Create the same NumPy array but with a different shape. By keeping the same shape as 

above, the Global Pooling layers will reduce them to one value. 

Global Average Pooling 

Considering a tensor of shape h*w*n, the output of the Global Average Pooling layer is a 

single value across h*w that summarizes the presence of the feature. Instead of downsizing 

the patches of the input feature map, the Global Average Pooling layer downsizes the 

whole h*w into 1 value by taking the average. 

Global Max Pooling 

With the tensor of shape h*w*n, the output of the Global Max Pooling layer is a single value 

across h*w that summarizes the presence of a feature. Instead of downsizing the patches of 

the input feature map, the Global Max Pooling layer downsizes the whole h*w into 1 value 

by taking the maximum. 

Training of CNN in TensorFlow 

https://towardsdatascience.com/convolutional-neural-networks-explained-how-to-successfully-classify-images-in-python-df829d4ba761
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Training of CNN in TensorFlow 

The MNIST database (Modified National Institute of Standard Technology 

database) is an extensive database of handwritten digits, which is used for training 

various image processing systems. It was created by "reintegrating" samples from 

the original dataset of the MNIST. 

If we are familiar with the building blocks of Connects, we are ready to build one with 

TensorFlow. We use the MNIST dataset for image classification. 

Preparing the data is the same as in the previous tutorial. We can run code and jump 

directly into the architecture of CNN. 

Here, we are executing our code in Google Colab (an online editor of machine 

learning). 

We can go to TensorFlow editor through the below 

link: https://colab.research.google.com 

These are the steps used to training the CNN (Convolutional Neural Network). 

Steps: 

Step 1: Upload Dataset 

Step 2: The Input layer 

Step 3: Convolutional layer 

Step 4: Pooling layer 

Step 5: Convolutional layer and Pooling Layer 

Step 6: Dense layer 

Step 7: Logit Layer 

https://colab.research.google.com/
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Step 1: Upload Dataset 

The MNIST dataset is available with scikit for learning in this URL (Unified Resource 

Locator). We can download it and store it in our downloads. We can upload it with 

fetch_mldata ('MNIST Original'). 

Create a test/train set 

We need to split the dataset into train_test_split. 

Scale the features 

Finally, we scale the function with the help of MinMax Scaler. 

1. import numpy as np   

2. import tensorflow as tf   

3.    

4. from sklearn.datasets import fetch_mldata   

5. #Change USERNAME by the username of the machine   

6. ##Windows USER   

7. mnist = fetch_mldata('C:\\Users\\USERNAME\\Downloads\\MNIST original')   

8. ## Mac User   

9. mnist = fetch_mldata('/Users/USERNAME/Downloads/MNIST original')   

10. print(mnist.data.shape)   

11. print(mnist.target.shape)   

12. from sklearn.model_selection import train_test_split   
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13. A_train, A_test, B_train, B_test = train_test_split(mnist.data,mnist.target, test_siz

e=0.2, random_state=45)   

14. B_train  = B_train.astype(int)   

15. B_test  = B_test.astype(int)   

16. batch_size =len(X_train)   

17. print(A_train.shape, B_train.shape,B_test.shape )   

18. ## rescale   

19. from sklearn.preprocessing import MinMaxScaler   

20. scaler = MinMaxScaler()   

21. # Train the Dataset   

22. X_train_scaled = scaler.fit_transform(A_train.astype(np.float65))   

 

1. #test the dataset   

2. X_test_scaled = scaler.fit_transform(A_test.astype(np.float65))   

3. feature_columns = [tf.feature_column.numeric_column('x',shape=A_train_scale

d.shape[1:])]   

4. X_train_scaled.shape[1:]   

Defining the CNN (Convolutional Neural Network) 

CNN uses filters on the pixels of any image to learn detailed patterns compared to 

global patterns with a traditional neural network. To create CNN, we have to define: 

1. A convolutional Layer: Apply the number of filters to the feature map. After 

convolution, we need to use a relay activation function to add non-linearity to the 

network. 

2. Pooling Layer: The next step after the Convention is to downsampling the maximum 

facility. The objective is to reduce the mobility of the feature map to prevent 

overfitting and improve the computation speed. Max pooling is a traditional 

technique, which splits feature maps into subfields and only holds maximum values. 

3. Fully connected Layers: All neurons from the past layers are associated with the 

other next layers. The CNN has classified the label according to the features from 

convolutional layers and reduced with any pooling layer. 

CNN Architecture 

o Convolutional Layer: It applies 14 5x5 filters (extracting 5x5-pixel sub-regions), 

o Pooling Layer: This will perform max pooling with a 2x2 filter and stride of 2 (which 

specifies that pooled regions do not overlap). 
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o Convolutional Layer: It applies 36 5x5 filters, with ReLU activation function 

o Pooling Layer: Again, performs max Pooling with a 2x2 filter and stride of 2. 

o 1,764 neurons, with the dropout regularization rate of 0.4 (where the probability of 

0.4 that any given element will be dropped in training) 

o Dense Layer (Logits Layer): There are ten neurons, one for each digit target class (0-

9). 

Important modules to use in creating a CNN: 

1. Conv2d (). Construct a two-dimensional convolutional layer with the number of filters, 

filter kernel size, padding, and activation function like arguments. 

2. max_pooling2d (). Construct a two-dimensional pooling layer using the max-pooling 

algorithm. 

3. Dense (). Construct a dense layer with the hidden layers and units 

We can define a function to build CNN. 

Let's see in detail how to construct every building block before wrapping everything 

in the function. 

Step 2: Input layer 

1. #Input layer   

2. def cnn_model_fn(mode, features, labels):   

3. input_layer = tf.reshape(tensor= features["x"],shape=[-1, 26, 26, 1])  

We need to define a tensor with the shape of the data. For that, we can use 

the module tf.reshape. In this module, we need to declare the tensor to reshape 

and to shape the tensor. The first argument is the feature of the data, that is defined 

in the argument of a function. 

A picture has a width, a height, and a channel. The MNIST dataset is a monochromic 

picture with the 28x28 size. We set the batch size into -1 in the shape argument so 

that it takes the shape of the features ["x"]. The advantage is to tune the batch size to 

hyperparameters. If the batch size is 7, the tensor feeds 5,488 values (28 * 28 * 7). 

Step 3: Convolutional Layer 

1. # first CNN Layer   

2. conv1 = tf.layers.conv2d(   

3.  inputs= input_layer,    

4.  filters= 18,    
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5.  kernel_size= [7, 7],    

6.  padding="same",    

7.  activation=tf.nn.relu)    

The first convolutional layer has 18 filters with the kernel size of 7x7 with equal 

padding. The same padding has both the output tensor and input tensor have the 

same width and height. TensorFlow will add zeros in the rows and columns to ensure 

the same size. 

We use the Relu activation function. The output size will be [28, 28, and 14]. 

Step 4: Pooling layer 

The next step after the convolutional is pooling computation. The pooling 

computation will reduce the extension of the data. We can use the module 

max_pooling2d with a size of 3x3 and stride of 2. We use the previous layer as input. 

The output size can be [batch_size, 14, 14, and 15]. 

1. ##first Pooling Layer    

2. pool1 = tf.layers.max_pooling2d (inputs=conv1,   

3. pool_size=[3, 3], strides=2)   

Step 5: Pooling Layer and Second Convolutional Layer 

The second CNN has exactly 32 filters, with the output size of [batch_size, 14, 14, 32]. 

The size of the pooling layer has the same as ahead, and output shape is [batch_size, 

14, 14, and18]. 

1. conv2 = tf.layers.conv2d(   

2.       inputs=pool1,   

3.       filters=36,   

4.       kernel_size=[5, 5],   

5.       padding="same",   

6.       activation=tf.nn.relu)   

7. pool2 = tf.layers.max_pooling2d (inputs=conv2, pool_size=[2, 2],strides=2).   

Step6: Fully connected (Dense) Layer 

We have to define the fully-connected layer. The feature map has to be compressed 

before to be combined with the dense layer. We can use the module reshape with a 

size of 7*7*36. 
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The dense layer will connect 1764 neurons. We add a Relu activation function and 

can add a Relu activation function. We add a dropout regularization term with a rate 

of 0.3, meaning 30 percent of the weights will be 0. The dropout takes place only 

along the training phase. The cnn_model_fn() has an argument mode to declare if 

the model needs to trained or to be evaluate. 

1. pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 36])   

2. dense = tf.layers.dense(inputs=pool2_flat, units=7 * 7 * 36, activation=tf.nn.relu)   

3. dropout = tf.layers.dropout(   

4. inputs=dense, rate=0.3, training=mode == tf.estimator.ModeKeys.TRAIN)   

Step 7: Logits Layer 

Finally, we define the last layer with the prediction of model. The output shape is 

equal to the batch size 12, equal to the total number of images in the layer. 

1. #Logit Layer   

2. logits = tf.layers.dense(inputs=dropout, units=12)     

We can create a dictionary that contains classes and the possibility of each class. The 

module returns the highest value with tf.argmax () if the logit layers. The softmax 

function returns the probability of every class. 

various popular CNN architectures: VGG, Google Net, ResNet 

etc: 

Types of Convolutional Neural Network Algorithms 

LeNetLeNet is a pioneering CNN designed for recognizing handwritten characters. It was proposed by 

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner in the late 1990s. LeNet consists of a 

series of convolutional and pooling layers, as well as a fully connected layer and softmax classifier. It was 

among the first successful applications of deep learning for computer vision. It has been used by banks to 

identify numbers written on cheques in grayscale input images. 

VGG  

VGG (Visual Geometry Group) is a research group within the Department of Engineering Science at the 

University of Oxford. The VGG group is well-known for its work in computer vision, particularly in the 

area of convolutional neural networks (CNNs). 

One of the most famous contributions from the VGG group is the VGG model, also known as VGGNet. 

The VGG model is a deep neural network that achieved state-of-the-art performance on the ImageNet 
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Large Scale Visual Recognition Challenge in 2014, and has been widely used as a benchmark for image 

classification and object detection tasks. 

The VGG model is characterized by its use of small convolutional filters (3×3) and deep architecture (up to 

19 layers), which enables it to learn increasingly complex features from input images. The VGG model 

also uses max pooling layers to reduce the spatial resolution of the feature maps and increase the receptive 

field, which can improve its ability to recognize objects of varying scales and orientations. 

The VGG model has inspired many subsequent research efforts in deep learning, including the 

development of even deeper neural networks and the use of residual connections to improve gradient flow 

and training stability.  

ResNet 

ResNet (short for “Residual Neural Network”) is a family of deep convolutional neural networks designed 

to overcome the problem of vanishing gradients that are common in very deep networks. The idea behind 

ResNet is to use “residual blocks” that allow for the direct propagation of gradients through the network, 

enabling the training of very deep networks. 

A residual block consists of two or more convolutional layers followed by an activation function, 

combined with a shortcut connection that bypasses the convolutional layers and adds the original input 

directly to the output of the convolutional layers after the activation function.  

This allows the network to learn residual functions that represent the difference between the convolutional 

layers’ input and output, rather than trying to learn the entire mapping directly. The use of residual blocks 

enables the training of very deep networks, with hundreds or thousands of layers, significantly alleviating 

the issue of vanishing gradients.  

GoogLeNet 

GoogLeNet is a deep convolutional neural network developed by researchers at Google. It was introduced 

in 2014 and won the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) that year, with a top-

five error rate of 6.67%. 

GoogLeNet is notable for its use of the Inception module, which consists of multiple parallel convolutional 

layers with different filter sizes, followed by a pooling layer, and concatenation of the outputs. This design 

allows the network to learn features at multiple scales and resolutions, while keeping the computational 

cost manageable. The network also includes auxiliary classifiers at intermediate layers, which encourage 

the network to learn more discriminative features and prevent overfitting. 

GoogLeNet builds upon the ideas of previous convolutional neural networks, including LeNet, which was 

one of the first successful applications of deep learning in computer vision. However, GoogLeNet is much 

deeper and more complex than LeNet. 
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Dropout: 

What is a Dropout? 

The term “dropout” refers to dropping out the nodes (input and 

hidden layer) in a neural network (as seen in Figure 1). All the 

forward and backwards connections with a dropped node are 

temporarily removed, thus creating a new network 

architecture out of the parent network. The nodes are dropped 

by a dropout probability of p. 

Let’s try to understand with a given input x: {1, 2, 3, 4, 5} to the fully 

connected layer. We have a dropout layer with probability p = 0.2 

(or keep probability = 0.8). During the forward propagation 

(training) from the input x, 20% of the nodes would be dropped, i.e. 

the x could become {1, 0, 3, 4, 5} or {1, 2, 0, 4, 5} and so on. 

Similarly, it applied to the hidden layers. 

For instance, if the hidden layers have 1000 neurons (nodes) and a 

dropout is applied with drop probability = 0.5, then 500 neurons 

would be randomly dropped in every iteration (batch). 

Generally, for the input layers, the keep probability, i.e. 1- drop 

probability, is closer to 1, 0.8 being the best as suggested by the 

authors. For the hidden layers, the greater the drop probability more 

sparse the model, where 0.5 is the most optimised keep probability, 

that states dropping 50% of the nodes. 

So how does dropout solves the problem of overfitting? 



B.Tech –AIML   R-22 
 
 

Deep Learning 

How does it solve the Overfitting problem? 

In the overfitting problem, the model learns the statistical noise. To 

be precise, the main motive of training is to decrease the loss 

function, given all the units (neurons). So in overfitting, a unit may 

change in a way that fixes up the mistakes of the other units. This 

leads to complex co-adaptations, which in turn leads to the 

overfitting problem because this complex co-adaptation fails to 

generalise on the unseen dataset. 

Now, if we use dropout, it prevents these units to fix up the mistake 

of other units, thus preventing co-adaptation, as in every iteration 

the presence of a unit is highly unreliable. So by randomly dropping 

a few units (nodes), it forces the layers to take more or less 

responsibility for the input by taking a probabilistic approach. 

This ensures that the model is getting generalised and hence 

reducing the overfitting problem. 

 

Figure 2: (a) Hidden layer features without dropout; (b) Hidden layer 

features with dropout  
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From figure 2, we can easily make out that the hidden layer with 

dropout is learning more of the generalised features than the co-

adaptations in the layer without dropout. It is quite apparent, that 

dropout breaks such inter-unit relations and focuses more on 

generalisation. 

Dropout Implementation 

Enough of the talking! Let’s head to the mathematical explanation of 

the dropout. 

 

Figure 3: (a) A unit (neuron) during training is present with a probability p 

and is connected to the next layer with weights ‘w’ ; (b) A unit during 

inference/prediction is always present and is connected to the next layer 

with weights, ‘pw’  

In the original implementation of the dropout layer, during training, 

a unit (node/neuron) in a layer is selected with a keep probability (1-

drop probability). This creates a thinner architecture in the given 

training batch, and every time this architecture is different. 

In the standard neural network, during the forward propagation we 

have the following equations: 
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Figure 4: Forward propagation of a standard neural network  

where: 

z: denote the vector of output from layer (l + 1) before activation 

y: denote the vector of outputs from layer l 

w: weight of the layer l 

b: bias of the layer l 

Further, with the activation function, z is transformed into the 

output for layer (l+1). 

Now, if we have a dropout, the forward propagation equations 

change in the following way: 

 

Figure 5: Forward propagation of a layer with dropout  

So before we calculate z, the input to the layer is sampled and 

multiplied element-wise with the independent Bernoulli 

variables. r denotes the Bernoulli random variables each of which 

has a probability p of being 1. Basically, r acts as a mask to the input 

variable, which ensures only a few units are kept according to the 

keep probability of a dropout. This ensures that we have thinned 

outputs “y(bar)”, which is given as an input to the layer during 

feed-forward propagation. 
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Training Deep Neural Networks is a difficult task that involves several problems to 

tackle. Despite their huge potential, they can be slow and be prone to overfitting. 

Thus, studies on methods to solve these problems are constant in Deep Learning 

research. 

Batch Normalization – commonly abbreviated as Batch Norm – is one of these 

methods. Currently, it is a widely used technique in the field of Deep Learning. It 

improves the learning speed of Neural Networks and provides regularization, 

avoiding overfitting. 

But why is it so important? How does it work? Furthermore, how can it be applied 

to non-regular networks such as Convolutional Neural Networks? 

 Normalization: 

Normalization is a pre-processing technique used to standardize data. In other 

words, having different sources of data inside the same range. Not normalizing the 

data before training can cause problems in our network, making it drastically 

harder to train and decrease its learning speed. 

 

For example, imagine we have a car rental service. Firstly, we want to predict a fair 

price for each car based on competitors’ data. We have two features per car: the 

age in years and the total amount of kilometers it has been driven for. These can 

have very different ranges, ranging from 0 to 30 years, while distance could go 

from 0 up to hundreds of thousands of kilometers. We don’t want features to have 

these differences in ranges, as the value with the higher range might bias our 

models into giving them inflated importance. 
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There are two main methods to normalize our data. The most straightforward 
method is to scale it to a range from 0 to 1: 

The data point to normalize,  the mean of the data set,  the highest value, 

and  the lowest value. This technique is generally used in the inputs of the 

data. The non-normalized data points with wide ranges can cause instability in 

Neural Networks. The relatively large inputs can cascade down to the layers, 

causing problems such as exploding gradients. 

The other technique used to normalize data is forcing the data points to have a 
mean of 0 and a standard deviation of 1, using the following formula: 

 

being  the data point to normalize,  the mean of the data set, and  the standard 

deviation of the data set. Now, each data point mimics a standard normal 

distribution. Having all the features on this scale, none of them will have a bias, 

and therefore, our models will learn better. 

In Batch Norm, we use this last technique to normalize batches of data inside the 
network itself. 

Batch Normalization 

Batch Norm is a normalization technique done between the layers of a Neural 

Network instead of in the raw data. It is done along mini-batches instead of the 

full data set. It serves to speed up training and use higher learning rates, making 
learning easier. 

Following the technique explained in the previous section, we can define the 

normalization formula of Batch Norm as: 

   

being mz the mean of the neurons’ output and sz the standard deviation of the 
neurons’ output. 
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How Is It Applied? 

In the following image, we can see a regular feed-forward Neural Network:  are 

the inputs,  the output of the neurons,  the output of the activation functions, 

and  the output of the network: 

 

Batch Norm – in the image represented with a red line – is applied to the neurons’ 

output just before applying the activation function. Usually, a neuron without 
Batch Norm would be computed as follows: 

 

being the linear transformation of the neuron,  the weights of the neuron,  the 

bias of the neurons, and  the activation function. The model learns the 

parameters  and . Adding Batch Norm, it looks as: 

   

being  the output of Batch Norm,  the mean of the neurons’ output,  the 

standard deviation of the output of the neurons, and  and  learning parameters of 

Batch Norm. Note that the bias of the neurons ( ) is removed. This is because as 

we subtract the mean , any constant over the values of  z– such as  b – can be 

ignored as it will be subtracted by itself. 

The parameters  and  shift the mean and standard deviation, 

respectively. Thus, the outputs of Batch Norm over a layer result in a distribution 

with a mean  and a standard deviation of . These values are learned over 

epochs and the other learning parameters, such as the weights of the neurons, 
aiming to decrease the loss of the model. 

 

 

 

Data Augmentation: 

https://www.baeldung.com/wp-content/uploads/sites/4/2020/10/neural-network.png
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What is Data Augmentation in a CNN: 
Algorithms can use machine learning to identify different objects and classify them 
for image recognition. This evolving technology includes using Data Augmentation to 
produce better-performing models. Machine learning models need to identify an 
object in any condition, even if it is rotated, zoomed in, or a grainy image. 
Researchers needed an artificial way of adding training data with realistic 
modifications. 

Data augmentation is the addition of new data artificially derived from 
existing training data. Techniques include resizing, flipping, rotating, cropping, 
padding, etc. It helps to address issues like overfitting and data scarcity, and it 
makes the model robust with better performance. 

Data Augmentation provides many possibilities to alter the original image and can 
be useful to add enough data for larger models. It is important to learn the 
techniques of Data Augmentation and its advantages and disadvantages. In this 
post, I’ll cover all the details you need and show you a Python example using 
PyTorch. 

Data Augmentation in a CNN: 

Convolutional Neural Networks (CNNs) can do amazing things if there is 

sufficient data. However, selecting the correct amount of training data for all 

of the features that need to be trained is a difficult question. If the user does 

not have enough, the network can overfit on the training data. Realistic images 

contain a variety of sizes, poses, zoom, lighting, noise, etc. 

To make the network robust to these commonly encountered factors, the 

method of Data Augmentation is used. By rotating input images to different 

angles, flipping images along different axes, or translating/cropping the images 

the network will encounter these phenomena during training. 

As more parameters are added to a CNN, it requires more examples to show to 

the machine learning model. Deeper networks can have higher performance, 

but the tradeoff is increased training data needs and increased training time. 

 

Data Augmentation Techniques Data Augmentation Factor 
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Data Augmentation Techniques Data Augmentation Factor 

Flipping 2-4x (in each direction) 

Rotation Arbitrary 

Translation Arbitrary 

Scaling Arbitrary 

Salt and Pepper Noise Addition At least 2x (depends on the implementation) 

A table outlining the factor by which different methods multiply the existing training data. 

Data Augmentation Techniques: 

Some libraries use Data Augmentation by actually copying the training images 

and saving these copies as part of the total. This produces new training 

examples to feed to the machine learning model. Other libraries simply define 

a set of transforms to perform on the input training data. These transforms are 

applied randomly. As a result, the space the optimizer is searching is increased. 

This has the advantage that it does not require extra disk space to augment the 

training. 

Image Data Augmentation is now a famous and common method used with CNNs 
and involves techniques such as: 

 Flips 
 Rotation (at 90 degrees and finer angles) 
 Translation 
 Scaling 
 Salt and Pepper noise addition 

Data Augmentation has even been used in applications like sound recognition. In the 
next sections, I’ll cover these Data Augmentation methods in detail. 

Flips: 

By Flipping images, the optimizer will not become biased that particular 

features of an image are only on one side. To do this augmentation, the 
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original training image is flipped vertically or horizontally over one axis of the 

image. As a result, the features continually change directions. 

   

Stella the Puppy sitting on a car seat  Stella the Puppy Flipped over the vertical axis.  

Flipping is a similar augmentation as rotation, however, it produces mirror 

images. A particular feature such as the head of a person either stays on top, 

on the left, on the right, or at the bottom of the image. 

Rotation: 

Rotation is an augmentation that is commonly performed at 90-degree angles 

but can even happen at smaller or minute angles if the need for more data is 

great. For rotation, the background color is commonly fixed so that it can blend 

when the image is rotated. Otherwise, the model can assume the background 

change is a distinct feature. This works best when the background is the same 

in all rotated images. 

    

Stella the Puppy sitting on a car seat   Stella the Puppy rotated 90 degrees. 
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Specific features move in rotations. For example, the head of a person will be 

rotated 10, 22.7, or -8 degrees. However, rotation does not change the 

orientation of the feature and will not produce mirror images like flips. This 

helps models not consider the angle to be a distinct feature of the human. 

Translation: 

Translation of an image means shifting the main object in the image in various 

directions. For example, consider a person in the canter with all their parts 

visible in the frame and take it as a base image. Next, shift the person to one 

corner with the legs cut from the bottom as one translated image. 

  

Stella the Puppy sitting on a car seat Stella the Puppy translated and cropped so 

she’s only partly visible. 

Scaling: 

Scaling provides more diversity in the training data of a machine learning model. 
Scaling the image will ensure that the object is recognized by the network regardless 
of how zoomed in or out the image is. Sometimes the object is tiny in the center. 
Sometimes, the object is zoomed in the image and even cropped at some parts. 
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Stella the Puppy sitting on a car seat         Stella the Puppy scaled up to be even larger than she is in 

real life. 

Salt and Pepper Noise Addition 

Salt and pepper noise addition is the addition of black and white dots (looking like 
salt and pepper) to the image. This simulates dust and imperfections in real photos. 
Even if the camera of the photographer is blurry or has spots on it, the image would 
be better recognized by the model. The training data set is augmented to train the 
model with more realistic images. 

       

Stella the Puppy sitting on a car seat            Stella the Puppy with Salt and Pepper noise added to the 

image 

Benefits of Data Augmentation in a CNN 

There are many benefits of using Data Augmentation: 

 Prediction improvement in a model becomes more accurate because 
Data Augmentation helps in recognizing samples the model has never 
seen before. 

 There is enough data for the model to understand and train all the 
available parameters. This can be essential in applications where data 
collection is difficult. 

 Helps prevent the model from overfitting due to Data Augmentation 
creating more variety in the data. 

 Can save time in areas where collecting more data is time-consuming. 
 Can reduce the cost required for collecting a variety of data if data 

collection is costly. 

Drawbacks of Data Augmentation: 

Data Augmentation is not useful when the variety required by the application cannot 
be artificially generated. For example, if one were training a bird recognition model 
and the training data contained only red birds. The training data could be augmented 
by generating pictures with the color of the bird varied. 

However, the artificial augmentation method may not capture the realistic color 
details of birds when there is not enough variety of data to start with. For example, if 
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the augmentation method simply varied red for blue or green, etc. Realistic non-red 
birds may have more complex color variations and the model may fail to recognize 
the color. Having sufficient data is still important if one wants Data Augmentation to 
work properly. 

 

UNIT-III 

RECURRENT NEURAL NETWORK (RNN): Introduction to 

RNNs and their applications in sequential data analysis, Back 

propagation through time (BPTT), Vanishing Gradient Problem, 

gradient clipping Long Short-Term Memory (LSTM) Networks, 

Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs. 

Introduction to RNNs and their applications in sequential data analysis: 

Recurrent Neural Network also known as (RNN) that works better than a 

simple neural network when data is sequential like Time-Series data and text 

data.  

A Deep Learning approach for modelling sequential data is Recurrent 

Neural Networks (RNN). RNNs were the standard suggestion for working 

with sequential data before the advent of attention models. Specific 

parameters for each element of the sequence may be required by a deep 

feedforward model. It may also be unable to generalize to variable-length 

sequences. 

 

Recurrent Neural Networks use the same weights for each element of the 

sequence, decreasing the number of parameters and allowing the model to 

generalize to sequences of varying lengths. RNNs generalize to structured 
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data other than sequential data, such as geographical or graphical data, 

because of its design. 

Recurrent neural networks, like many other deep learning techniques, are 

relatively old. They were first developed in the 1980s, but we didn’t 

appreciate their full potential until lately. The advent of long short-term 

memory (LSTM) in the 1990s, combined with an increase in computational 

power and the vast amounts of data that we now have to deal with, has 

really pushed RNNs to the forefront. 

What is a Recurrent Neural Network (RNN)? 

Neural networks imitate the function of the human brain in the fields of AI, 

machine learning, and deep learning, allowing computer programs to 

recognize patterns and solve common issues. 

RNNs are a type of neural network that can be used to model sequence 

data. RNNs, which are formed from feedforward networks, are similar to 

human brains in their behaviour. Simply said, recurrent neural networks 

can anticipate sequential data in a way that other algorithms can’t. 

 

 All of the inputs and outputs in standard neural networks are independent 

of one another, however in some circumstances, such as when predicting 

the next word of a phrase, the prior words are necessary, and so the 

previous words must be remembered. As a result, RNN was created, which 
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used a Hidden Layer to overcome the problem. The most important 

component of RNN is the Hidden state, which remembers specific 

information about a sequence. 

RNNs have a Memory that stores all information about the calculations. It 

employs the same settings for each input since it produces the same 

outcome by performing the same task on all inputs or hidden layers. 

The Architecture of a Traditional RNN 

RNNs are a type of neural network that has hidden states and allows past 

outputs to be used as inputs. They usually go like this: 
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RNN architecture can vary depending on the problem you’re trying to solve. 

From those with a single input and output to those with many (with 

variations between). 

Below are some examples of RNN architectures that can help you better 

understand this. 

 One To One: There is only one pair here. A one-to-one architecture 

is used in traditional neural networks. 

 One To Many: A single input in a one-to-many network might result 

in numerous outputs. One too many networks are used in the 

production of music, for example. 

 Many To One:  In this scenario, a single output is produced by 

combining many inputs from distinct time steps. Sentiment analysis 

and emotion identification use such networks, in which the class label 

is determined by a sequence of words. 

 Many To Many: For many to many, there are numerous options. 

Two inputs yield three outputs. Machine translation systems, such as 

English to French or vice versa translation systems, use many to 

many networks. 

How does Recurrent Neural Networks work? 

The information in recurrent neural networks cycles through a loop to the 

middle-hidden layer. 
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The input layer x receives and processes the neural network’s input before 

passing it on to the middle layer. 

Multiple hidden layers can be found in the middle layer h, each with its own 

activation functions, weights, and biases. You can utilize a recurrent neural 

network if the various parameters of different hidden layers are not 

impacted by the preceding layer, i.e. There is no memory in the neural 

network. 

The different activation functions, weights, and biases will be standardized 

by the Recurrent Neural Network, ensuring that each hidden layer has the 

same characteristics. Rather than constructing numerous hidden layers, it 

will create only one and loop over it as many times as necessary. 

Common Activation Functions: 

A neuron’s activation function dictates whether it should be turned on or off. 

Nonlinear functions usually transform a neuron’s output to a number 

between 0 and 1 or -1 and 1. 
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Source: MLtutorial.com 

The following are some of the most commonly utilized functions: 

 Sigmoid: The formula g(z) = 1/(1 + e^-z) is used to express this. 

 Tanh: The formula g(z) = (e^-z – e^-z)/(e^-z + e^-z) is used to 

express this. 

 Relu: The formula g(z) = max(0 , z) is used to express this. 

Applications of RNN Networks 

1. Machine Translation: 
  

RNN can be used to build a deep learning model that can translate text from 

one language to another without the need for human intervention. You can, 

for example, translate a text from your native language to English. 

 

  

2. Text Creation: 
  

RNNs can also be used to build a deep learning model for text generation. 

Based on the previous sequence of words/characters used in the text, a trained 

model learns the likelihood of occurrence of a word/character. A model can 

be trained at the character, n-gram, sentence, or paragraph level. 

 

  

3. Captioning of images: 
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The process of creating text that describes the content of an image is known 

as image captioning. The image's content can depict the object as well as the 

action of the object on the image. In the image below, for example, the 

trained deep learning model using RNN can describe the image as "A lady in 

a green coat is reading a book under a tree.” 

 

  

4. Recognition of Speech: 
  

This is also known as Automatic Speech Recognition (ASR), and it is capable 

of converting human speech into written or text format. Don't mix up speech 

recognition and voice recognition; speech recognition primarily focuses on 

converting voice data into text, whereas voice recognition identifies the user's 

voice. 

  

Speech recognition technologies that are used on a daily basis by various 

users include Alexa, Cortana, Google Assistant, and Siri. 

 

  

5. Forecasting of Time Series: 
  

After being trained on historical time-stamped data, an RNN can be used to 

create a time series prediction model that predicts the future outcome. The 

stock market is a good example. 

  

You can use stock market data to build a machine learning model that can 

forecast future stock prices based on what the model learns from historical 

data. This can assist investors in making data-driven investment decisions. 

Recurrent Neural Network Vs Feedforward Neural Network: 

A feed-forward neural network has only one route of information flow: from 

the input layer to the output layer, passing through the hidden layers. The 

data flows across the network in a straight route, never going through the 

same node twice. 

The information flow between an RNN and a feed-forward neural network is 

depicted in the two figures below. 
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 Feed-forward neural networks are poor predictions of what will happen 

next because they have no memory of the information they receive. 

Because it simply analyses the current input, a feed-forward network has 

no idea of temporal order. Apart from its training, it has no memory of what 

transpired in the past. 

The information is in an RNN cycle via a loop. Before making a judgment, it 

evaluates the current input as well as what it has learned from past inputs. 

A recurrent neural network, on the other hand, may recall due to internal 

memory. It produces output, copies it, and then returns it to the network. 

Backpropagation Through Time-RNN: 
Backpropagation is a training algorithm that we use for training neural networks. 
When preparing a neural network, we are tuning the network's weights to 
minimize the error concerning the available actual values with the help of the 
Backpropagation algorithm. Backpropagation is a supervised learning algorithm 
as we find errors concerning already given values. 
The backpropagation training algorithm aims to modify the weights of a neural 
network to minimize the error of the network results compared to some 
expected output in response to corresponding inputs. 
The general algorithm of Backpropagation is as follows: 

1. We first train input data and propagate it through the network to get 
an output. 
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2. Compare the predicted outcomes to the expected results and calculate 
the error. 

3. Then, we calculate the derivatives of the error concerning the network 
weights. 

4. We use these calculated derivatives to adjust the weights to minimize 
the error. 

5. Repeat the process until the error is minimized. 
  
In simple words, Backpropagation is an algorithm where the information of cost 
function is passed on through the neural network in the backward direction. The 
Backpropagation training algorithm is ideal for training feed-forward neural 
networks on fixed-sized input-output pairs. 
Unrolling The Recurrent Neural Network 

We will briefly discuss RNN to understand how the backpropagation algorithm is 
applied to recurrent neural networks or RNN. Recurrent Neural Network deals 
with sequential data. RNN predicts outputs using not only the current inputs but 
also by considering those that occurred before it. In other words, the current 
outcome depends on the current production and a memory element (which 
evaluates the past inputs). 
The below figure depicts the architecture of RNN : 
  

 
                               

We use Backpropagation for training such networks with a slight change. We 
don't independently train the network at a specific time "t." We train it at a 
particular time "t" as well as all that has happened before time "t" like t-1, t-2, t-3. 
S1, S2, S3 are the hidden states at time t1, t2, t3, respectively, and Ws is the 
associated weight matrix. 
x1, x2, x3 are the inputs at time t1, t2, t3, respectively, and Wx is the associated 
weight matrix. 
Y1, Y2, Y3 are the outcomes at time t1, t2, t3, respectively, and Wy is the 
associated weight matrix. 
At time t0, we feed input x0 to the network and output y0. At time t1, we provide 
input x1 to the network and receive an output y1. From the figure, we can see 
that to calculate the outcome. The network uses input x and the cell state from 
the previous timestamp. To calculate specific Hidden state and output at each 
step, here is the formula: 
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To calculate the error, we take the output and calculate its error concerning the 

actual result, but we have multiple outputs at each timestamp. Thus, the regular 

Backpropagation won't work here. Therefore, we modify this algorithm and call 

the new algorithm as Backpropagation through time. 

Backpropagation Through Time 

It is important to note that Ws, Wx, and Wy do not change across the timestamps, 
which means that for all inputs in a sequence, the values of these weights are the 
same. 
The error function is defined as: 

 

 
Now the question arises: What is the total loss for this network? How do we 
update the weights  Ws, Wx, and Wy? 
The total loss we have to calculate is the sum in overall timestamps,i.e., 
E0+E1+E2+E3+... 
Now to calculate the error gradient concerning Ws, Wx, and Wy. It is relatively 
easy to calculate the loss derivative concerning Wy as the derivative only 
depends on the current timestamp values. 
Formula: 

 

But when calculating the derivative of loss concerning Ws and Wx, it becomes 
tricky. 
Formula: 

 
The value of s3 depends on s2, which is a function of Ws. Therefore we cannot 
calculate the derivative of s3, taking s2 as constant. In RNN networks, the 
derivative has two parts, implicit and explicit. We assume all other inputs as 
constant in the explicit part, whereas we sum over all the indirect paths in the 
implicit part. 
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The general expression can be written as: 

 
Similarly, for Wx, it can be written as: 

 
Now that we have calculated all three derivatives, we can easily update the 
weights. This algorithm is known as Backpropagation through time, as we used 
values across all the timestamps to calculate the gradients. 
The algorithm at a glance: 

 We feed a sequence of timestamps of input and output pairs to the 
network. 

 Then, we unroll the network then calculate and accumulate errors 
across each timestamp. 

 Finally, we roll up the network and update weights. 
 Repeat the process. 

Limitations of BPTT: 
BPTT has difficulty with local optima. Local optima are a more significant issue 
with recurrent neural networks than feed-forward neural networks. The 
recurrent feedback in such networks creates chaotic responses in the error 
surface, which causes local optima to occur frequently and in the wrong locations 
on the error surface. 
When using BPTT in RNN, we face problems such as exploding gradient and 
vanishing gradient. To avoid issues such as exploding gradient, we use a gradient 
clipping method to check if the gradient value is greater than the threshold or not 
at each timestamp. If it is, we normalize it. This helps to tackle exploding 
gradient. 
We can use BPTT up to a limited number of steps like 8 or 10. If we 
backpropagate further, the gradient becomes too negligible and is a Vanishing 
gradient problem. To avoid the vanishing gradient problem, some of the possible 
solutions are: 

 Using ReLU activation function in place of tanh or sigmoid activation 
function. 

 Proper initializing the weight matrix can reduce the effect of vanishing 
gradients. For example, using an identity matrix helps us tackle this 
problem. 

 Using gated cells such as LSTM or GRUs. 
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Vanishing Gradient Problem: 
The gradient descent algorithm finds the global minimum of the cost function that is 

going to be an optimal setup for the network. 

As you might also recall, information travels through the neural network from input 

neurons to the output neurons, while the error is calculated and propagated back 

through the network to update the weights. 

It works quite similarly for RNNs, but here we’ve got a little bit more going on. 

 Firstly, information travels through time in RNNs, which means that 

information from previous time points is used as input for the next time 

points. 

 Secondly, you can calculate the cost function, or your error, at each time 

point. 

 

Basically, during the training, your cost function compares your outcomes (red circles 

on the image below) to your desired output. 

As a result, you have these values throughout the time series, for every single one of 

these red circles. 

 

 

Let’s focus on one error term et. 

https://en.wikipedia.org/wiki/Gradient_descent


B.Tech –AIML   R-22 
 
 

Deep Learning 

You’ve calculated the cost function et, and now you want to propagate your cost 

function back through the network because you need to update the weights. 

Essentially, every single neuron that participated in the calculation of the output, 

associated with this cost function, should have its weight updated in order to minimize 

that error. And the thing with RNNs is that it’s not just the neurons directly below this 

output layer that contributed but all of the neurons far back in time. So, you have to 

propagate all the way back through time to these neurons. 

The problem relates to updating wrec (weight recurring) – the weight that is used to 

connect the hidden layers to themselves in the unrolled temporal loop. 

For instance, to get from xt-3 to xt-2 we multiply xt-3 by wrec. Then, to get from xt-2 

to xt-1 we again multiply xt-2 by wrec. So, we multiply with the same exact weight 

multiple times, and this is where the problem arises: when you multiply something by 

a small number, your value decreases very quickly. 

As we know, weights are assigned at the start of the neural network with the random 

values, which are close to zero, and from there the network trains them up. But, when 

you start with wrec close to zero and multiply xt, xt-1, xt-2, xt-3, … by this value, 

your gradient becomes less and less with each multiplication. 

 

 

 

What does this mean for the network? 
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The lower the gradient is, the harder it is for the network to update the weights and the 

longer it takes to get to the final result. 

For instance, 1000 epochs might be enough to get the final weight for the time point t, 

but insufficient for training the weights for the time point t-3 due to a very low 

gradient at this point. However, the problem is not only that half of the network is not 

trained properly. 

The output of the earlier layers is used as the input for the further layers. Thus, the 

training for the time point t is happening all along based on inputs that are coming 

from untrained layers. So, because of the vanishing gradient, the whole network is not 

being trained properly. 

To sum up, if wrec is small, you have vanishing gradient problem, and if wrec is large, 

you have exploding gradient problem 

For the vanishing gradient problem, the further you go through the network, the lower 

your gradient is and the harder it is to train the weights, which has a domino effect on 

all of the further weights throughout the network. 

That was the main roadblock to using Recurrent Neural Networks. But let’s now 

check what are the possible solutions to this problem. 

Solutions to the vanishing gradient problem 

In case of exploding gradient, you can: 

 stop backpropagating after a certain point, which is usually not optimal 

because not all of the weights get updated; 

 penalize or artificially reduce gradient; 

 put a maximum limit on a gradient. 

 

In case of vanishing gradient, you can: 

 initialize weights so that the potential for vanishing gradient is minimized; 

 have Echo State Networks that are designed to solve the vanishing gradient 

problem; 

 have Long Short-Term Memory Networks (LSTMs). 

Gradient clipping Long Short-Term Memory (LSTM) 
Networks: 

Training a neural network can become unstable given the choice of error function, 

learning rate, or even the scale of the target variable. 
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Large updates to weights during training can cause a numerical overflow or 

underflow often referred to as “exploding gradients.” 

The problem of exploding gradients is more common with recurrent neural 

networks, such as LSTMs given the accumulation of gradients unrolled over 

hundreds of input time steps. 

A common and relatively easy solution to the exploding gradients problem is to 

change the derivative of the error before propagating it backward through the 

network and using it to update the weights. Two approaches include rescaling the 

gradients given a chosen vector norm and clipping gradient values that exceed a 

preferred range. Together, these methods are referred to as “gradient clipping.”  

 Training neural networks can become unstable, leading to a numerical 
overflow or underflow referred to as exploding gradients. 

 The training process can be made stable by changing the error gradients 
either by scaling the vector norm or clipping gradient values to a range. 

 How to update an MLP model for a regression predictive modeling problem 
with exploding gradients to have a stable training process using gradient 
clipping methods. 

Exploding Gradients and Clipping 

Neural networks are trained using the stochastic gradient descent optimization 

algorithm. 

This requires first the estimation of the loss on one or more training examples, 

then the calculation of the derivative of the loss, which is propagated backward 

through the network in order to update the weights. Weights are updated using a 

fraction of the back propagated error controlled by the learning rate. 

It is possible for the updates to the weights to be so large that the weights 

either overflow or underflow their numerical precision. In practice, the weights can 

take on the value of an “NaN” or “Inf” when they overflow or underflow and for 

practical purposes the network will be useless from that point forward, forever 

predicting NaN values as signals flow through the invalid weights. 

“ The difficulty that arises is that when the parameter gradient is very large, a 

gradient descent parameter update could throw the parameters very far, into a 

region where the objective function is larger, undoing much of the work that had 

been done to reach the current solution.” 

The underflow or overflow of weights is generally refers to as an instability of the network 

training process and is known by the name “exploding gradients” as the unstable training 

process causes the network to fail to train in such a way that the model is essentially 

useless. 

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
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In a given neural network, such as a Convolutional Neural Network or Multilayer 

Perceptron, this can happen due to a poor choice of configuration. Some examples 

include: 

 Poor choice of learning rate that results in large weight updates. 
 Poor choice of data preparation, allowing large differences in the target variable. 
 Poor choice of loss function, allowing the calculation of large error values. 

Exploding gradients is also a problem in recurrent neural networks such as the Long 

Short-Term Memory network given the accumulation of error gradients in the unrolled 

recurrent structure. 

Exploding gradients can be avoided in general by careful configuration of the network 

model, such as choice of small learning rate, scaled target variables, and a standard 

loss function. Nevertheless, exploding gradients may still be an issue with recurrent 

networks with a large number of input time steps. 

 
“One difficulty when training LSTM with the full gradient is that the derivatives 
sometimes become excessively large, leading to numerical problems. To prevent 
this, [we] clipped the derivative of the loss with respect to the network inputs to the 
LSTM layers (before the sigmoid and tanh functions are applied) to lie within a 
predefined range” 
 

A common solution to exploding gradients is to change the error derivative before 

propagating it backward through the network and using it to update the weights. By 

rescaling the error derivative, the updates to the weights will also be rescaled, 

dramatically decreasing the likelihood of an overflow or underflow. 

There are two main methods for updating the error derivative; they are: 

 Gradient Scaling. 
 Gradient Clipping. 

Gradient scaling involves normalizing the error gradient vector such that vector norm 

(magnitude) equals a defined value, such as 1.0. 

… one simple mechanism to deal with a sudden increase in the norm of the 

gradients is to rescale them whenever they go over a threshold 

Gradient clipping involves forcing the gradient values (element-wise) to a specific 

minimum or maximum value if the gradient exceeded an expected range.Together, 

these methods are often simply referred to as “gradient clipping.” 

“When the traditional gradient descent algorithm proposes to make a very large step, 

the gradient clipping heuristic intervenes to reduce the step size to be small enough 

https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
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that it is less likely to go outside the region where the gradient indicates the direction 

of approximately steepest descent.” 

It is a method that only addresses the numerical stability of training deep neural 

network models and does not offer any general improvement in performance. 

The value for the gradient vector norm or preferred range can be configured by trial 

and error, by using common values used in the literature or by first observing 

common vector norms or ranges via experimentation and then choosing a sensible 

value. 

In our experiments we have noticed that for a given task and model size, training is 

not very sensitive to this [gradient norm] hyperparameter and the algorithm behaves 

well even for rather small thresholds. 

It is common to use the same gradient clipping configuration for all layers in the 

network. Nevertheless, there are examples where a larger range of error gradients 

are permitted in the output layer compared to hidden layers. 

The output derivatives […] were clipped in the range [−100, 100], and the LSTM 

derivatives were clipped in the range [−10, 10]. Clipping the output gradients proved 

vital for numerical stability; even so, the networks sometimes had numerical 

problems late on in training, after they had started overfitting on the training data. 

Gated Recurrent Unit (GRU): 

A Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN) architecture type. Like 

other RNNs, a GRU can process sequential data such as time series, natural language, and 

speech. The main difference between a GRU and other RNN architectures, such as the Long 

Short-Term Memory (LSTM) network, is how the network handles information flow through 

time. 

Take a look at the following sentence: 

"My mom gave me a bicycle on my birthday because she knew that I wanted to go biking 
with my friends." 

As we can see from the above sentence, words that affect each other can be further apart. 
For example, "bicycle" and "go biking" are closely related but are placed further apart in the 
sentence. 

An RNN network finds tracking the state with such a long context difficult. It needs to find 
out what information is important. However, a GRU cell greatly alleviates this problem. 
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GRU network was invented in 2014. It solves problems involving long sequences with 
contexts placed further apart, like the above biking example. This is possible because of how 
the GRU cell in the GRU architecture is built. Let us now delve deeper into the 
understanding and working of the GRU network. 

Understanding the GRU Cell: 

The Gated Recurrent Unit (GRU) cell is the basic building block of a GRU network. It 
comprises three main components: an update gate, a reset gate, and a candidate hidden 
state. 

 

 

One of the key advantages of the GRU cell is its simplicity. Since it has fewer parameters 
than a long short-term memory (LSTM) cell, it is faster to train and run and less prone to 
overfitting. 

Additionally, one thing to remember is that the GRU cell architecture is simple, the cell itself 
is a black box, and the final decision on how much we should consider the past state and 
how much should be forgotten is taken by this GRU cell. We need to look inside and 
understand what the cell is thinking. 

Compare GRU vs LSTM 

Here is a comparison of Gated Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM) networks 

 
GRU LSTM 

Structure 
Simpler structure with two gates 

(update and reset gate) 

More complex structure with three gates 

(input, forget, and output gate) 

Parameters 
Fewer parameters (3 weight 

matrices) 
More parameters (4 weight matrices) 

Training Faster to train Slow to train 

Space 

Complexity 

In most cases, GRU tend to use 

fewer memory resources due to its 

simpler structure and fewer 

parameters, thus better suited for 

LSTM has a more complex structure and 

a larger number of parameters, thus might 

require more memory resources and 

could be less effective for large datasets 
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GRU LSTM 

large datasets or sequences. or sequences. 

Performance 

Generally performed similarly to 

LSTM on many tasks, but in some 

cases, GRU has been shown to 

outperform LSTM and vice versa. 

It's better to try both and see which 

works better for your dataset and 

task. 

LSTM generally performs well on many 

tasks but is more computationally 

expensive and requires more memory 

resources. LSTM has advantages over 

GRU in natural language understanding 

and machine translation tasks. 

 

The Architecture of GRU 

A GRU cell keeps track of the important information maintained throughout the network. A 
GRU network achieves this with the following two gates: 

 Reset Gate 

 Update Gate. 

Given below is the simplest architectural form of a GRU cell. 

As shown below, a GRU cell takes two inputs: 

1. The previous hidden state 

2. The input in the current timestamp. 

The cell combines these and passes them through the update and reset gates. To get the 
output in the current timestep, we must pass this hidden state through a dense layer with 
softmax activation to predict the output. Doing so, a new hidden state is obtained and then 
passed on to the next time step. 

 

Update gate 

An update gate determines what current GRU cell will pass information to the next GRU cell. 
It helps in keeping track of the most important information. 

Let us see how the output of the Update Gate is obtained in a GRU cell. The input to the 
update gate is the hidden layer at the previous timestep h(t−1)) and the current input (xt). 
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Both have their weights associated with them which are learned during the training process. 
Let us say that the weights associated with h(t−1) is U(z), and that of xt is Wz. The output of 
the update gate Zt is given by, 

zt=σ(W(z)xt+U(z)ht−1) 

Reset gate 

A reset gate identifies the unnecessary information and decides what information to be laid 
off from the GRU network. Simply put, it decides what information to delete at the specific 
timestamp. 

Let us see how the output of the Reset Gate is obtained in a GRU cell. The input to the reset 
gate is the hidden layer at the previous timestep h(t−1) and the current input xt. Both have 
their weights associated with them which are learned during the training process. Let us say 
that the weights associated with h(t−1) is Ur, and that of xt is Wr. The output of the update 
gate rt is given by, 

rt=σ(W(r)xt+U(r)ht−1) 

PS: It is important to note that the weights associated with the hidden layer at the previous 
timestep and the current input are different for both gates. The values for these weights are 
learned during the training process. 

How Does GRU Work? 

Gated Recurrent Unit (GRU) networks process sequential data, such as time series or natural 
language, bypassing the hidden state from one time step to the next. The hidden state is a 
vector that captures the information from the past time steps relevant to the current time 
step. The main idea behind a GRU is to allow the network to decide what information from 
the last time step is relevant to the current time step and what information can be 
discarded. 

Candidate Hidden State 

A candidate's hidden state is calculated from the reset gate. This is used to determine the 
information stored from the past. This is generally called the memory component in a GRU 
cell. It is calculated by, 

ht′=tanh(Wxt+rt⊙Uht−1) 

Here, W - weight associated with the current input rt - Output of the reset gate U - Weight 
associated with the hidden layer of the previous timestep ′ht′ - Candidate hidden state 

Hidden state 

The following formula gives the new hidden state and depends on the update gate and 
candidate hidden state. 

ht=zt⊙ht−1+(1−zt)⊙ht′ 
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Here, zt -  utput of update gate  a e  parse error   xpected      , got  ’  at posi on    h’ _t - 
Candidate hidden state ht−1 - Hidden state at the previous timestep 

As we can see in the above formula, whenever zt is 0, the information at the previously 
hidden layer gets forgotten. It is updated with the value of the new candidate hidden 
layer(as 1−zt will be 1). If zt is 1, then the information from the previously hidden layer is 
maintained. This is how the most relevant information is passed from one state to the next. 

Now, we have all the basics to understand a GRU network's forward propagation (i.e., 
working). Without any further ado, let us get started. 

Forward Propagation in a GRU Cell 

In a Gated Recurrent Unit (GRU) cell, the forward propagation process includes several 
steps: 

 Calculate the output of the update gate(zt) using the update gate formula: 

 

 Calculate the output of the reset gate(rt) using the reset gate formula 

 

 

 

 



B.Tech –AIML   R-22 
 
 

Deep Learning 

 Calculate the candidate's hidden state 

 
 Calculate the new hidden state 

 
This is how forward propagation happens in a GRU cell at a GRU network. 

We have a question about how the weights are learnt in a GRU network to make the 

right prediction. Let's understand that in the next section. 

Backpropagation in a GRU Cell 

Take a look at the image below. Let each hidden layer(orange colour) represent a GRU 

cell. 

 
In the above image, we can see that whenever the network predicts wrongly, the network 

compares it with the original label, and the loss is then propagated throughout the 

network. This happens until all the weights' values are identified so that the value of 

the loss function used to compute the loss is minimum. During this time, the weights 

and biases associated with the hidden layers and the input are fine-tuned. 
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What are the differences and similarities between LSTM and GRU in 

terms of architecture and performance? 
LSTM and GRU are two types of recurrent neural networks (RNNs) that can handle 

sequential data, such as text, speech, or video. They are designed to 

overcome the problem of vanishing or exploding gradients 

that affect the training of standard RNNs. However, they have 

different architectures and performance characteristics that make them suitable for 

different applications. In this article, you will learn about the differences and 

similarities between LSTM and GRU in terms of architecture and performance. 

LSTM Architecture 
LSTM stands for long short-term memory, and it consists of a series of memory cells 

that can store and update information over long time steps. Each memory cell has 

three gates: an input gate, an output gate, and a forget gate. The input gate decides 

what information to add to the cell state, the output gate decides what information to 

output from the cell state, and the forget gate decides what information to discard 

from the cell state. The gates are learned by the network based on the input and the 

previous hidden state. 

GRU Architecture 
GRU stands for gated recurrent unit, and it is a simplified version of LSTM. It has only 

two gates: a reset gate and an update gate. The reset gate decides how much of the 

previous hidden state to keep, and the update gate decides how much of the new 

input to incorporate into the hidden state. The hidden state also acts as the cell state 

and the output, so there is no separate output gate. The GRU is easier to implement 

and requires fewer parameters than the LSTM. 

Performance Comparison 
The performance of LSTM and GRU depends on the task, the data, and the 

hyperparameters. Generally, LSTM is more powerful and flexible than GRU, but it is 

also more complex and prone to overfitting. GRU is faster and more efficient than 

LSTM, but it may not capture long-term dependencies as well as LSTM. Some 

empirical studies have shown that LSTM and GRU perform similarly on many 

natural language processing tasks, such as sentiment analysis, machine translation, 

and text generation. However, some tasks may benefit from the specific features of 

LSTM or GRU, such as image captioning, speech recognition, or video analysis. 

 

 

Similarities Between LSTM and GRU 
Despite their differences, LSTM and GRU share some common characteristics that make 

them both effective RNN variants. They both use gates to control the information 

flow and to avoid the vanishing or exploding gradient problem. They both can learn 

long-term dependencies and capture sequential patterns in the data. They both can be 

stacked into multiple layers to increase the depth and complexity of the network. 

They both can be combined with other neural network architectures, such as 

convolutional neural networks (CNNs) or attention mechanisms, to enhance their 

performance. 

 

Differences Between LSTM and GRU 
The main differences between LSTM and GRU lie in their architectures and their trade-

offs. LSTM has more gates and more parameters than GRU, which gives it more 
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flexibility and expressiveness, but also more computational cost and risk of 

overfitting. GRU has fewer gates and fewer parameters than LSTM, which makes it 

simpler and faster, but also less powerful and adaptable. LSTM has a separate cell 

state and output, which allows it to store and output different information, while 

GRU has a single hidden state that serves both purposes, which may limit its 

capacity. LSTM and GRU may also have different sensitivities to the 

hyperparameters, such as the learning rate, the dropout rate, or the sequence length. 

Bidirectional LSTM 
Introduction: 
To understand the working of Bi-LSTM first, we need to understand the unit cell of 
LSTM and LSTM network. LSTM stands for long short-term memory. In 1977 Hochretier 
and Schmidhuber introduced LSTM networks. These are the most commonly used 
recurrent neural networks. 

Need of LSTM 
As we know that sequential data is better handled by recurrent neural networks, but 
sometimes it is also necessary to store the result of the previous data. For example, “I 
will play cricket” and “I can play cricket” are two different sentences with different 
meanings. As we can see, the meaning of the sentence depends on a single word so, it is 
necessary to store the data of previous words. But no such memory is available in 
simple RNN. To solve this problem, we need to study a term called LSTM. 

 

The Architecture of the LSTM Unit 

The image below is the architecture of the LSTM unit. 

 

 
The LSTM unit has three gates: 

Input gate 
First, the current state x(t) and previous hidden state h(t-1) are passed into the input 
gate, i.e., the second sigmoid function. The x(t) and h(t-1) values are transformed 
between 0 and 1, where 0 is important, and 1 is not important. Furthermore, the current 
and hidden state information will be passed through the tanh function. The output from 
the tanh function will range from -1 to 1, and it will help to regulate the network. The 
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output values generated from the activation functions are ready for point-by-point 
multiplication. 

Forget gate 
The forget gate decides which information needs to be kept for further processing and 
which can be ignored. The hidden state h(t-1) and current input X(t) information are 
passed through the sigmoid function. After passing the values through the sigmoid 
function, it generates values between 0 and 1 that conclude whether the part of the 
previous output is necessary (by giving the output closer to 1).  

Output gate 
The output gate helps in deciding the value of the next hidden state. This state contains 
information on previous inputs. First, the current and previously hidden state values are 
passed into the third sigmoid function. Then the new cell state generated from the cell 
state is passed through the tanh function. Both these outputs are multiplied point-by-
point. Based upon the final value, the network decides which information the hidden 
state should carry. This hidden state is used for prediction. 
Finally, the new cell state and the new hidden state are carried over to the next step. 
To conclude, the forget gate determines which relevant information from the prior steps 
is needed. The input gate decides what relevant information can be added from the 
current step, and the output gates finalize the next hidden state. 
How do LSTM works? 

The Lengthy Short Term Memory architecture was inspired by an examination of error 
flow in current RNNs, which revealed that long time delays were inaccessible to existing 
designs due to backpropagated error, which either blows up or decays exponentially. 
 An LSTM layer is made up of memory blocks that are recurrently linked. These 
blocks can be thought of as a differentiable version of a digital computer's memory 
chips. Each one has recurrently connected memory cells as well as three multiplicative 
units – the input, output, and forget gates – that offer continuous analogs of the cells' 
write, read, and reset operations.  

What is Bi-LSTM? 

 Bidirectional LSTM networks function by presenting each training sequence 
forward and backward to two independent LSTM networks, both of which are coupled 
to the same output layer. This means that the Bi-LSTM contains comprehensive, 
sequential information about all points before and after each point in a particular 
sequence.  
 In other words, rather than encoding the sequence in the forward direction only, 
we encode it in the backward direction as well and concatenate the results from both 
forward and backward LSTM at each time step. The encoded representation of each 
word now understands the words before and after the specific word. 
Below is the basic architecture of Bi-LSTM. 
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Working of Bi-LSTM 

Let us understand the working of Bi-LSTM using an example. Consider the sentence “I 
will swim today”. The below image represents the encoded representation of the 
sentence in the Bi-LSTM network. 

 
So when forward LSTM occurs, “I” will be passed into the LSTM network at time t = 0, 
“will” at t = 1, “swim” at t = 2, and “today” at t = 3. In backward LSTM “today” will be 
passed into the network at time t = 0, “swim” at t = 1, “will” at t = 2, and “I” at t = 3. In 
this way, results  both forward and backward LSTM at each time step is calculated. 
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UNIT- IV 

GENERATIVE ADVERSARIAL NETWORKS (GANS): 

Generative models, Concept and principles of GANs, Architecture 

of GANs (generator and discriminator networks), Comparison 

between discriminative and generative models, Generative 

Adversarial Networks (GANs), Applications of GANs 

Generative Adversarial Networks and its models: 

Introducton: 

What are Generative Adversarial Networks (GANs): 

 

Generative Adversarial Networks (GANs) were developed in 2014 by Ian Goodfellow 

and his teammates. GAN is basically an approach to generative modeling that 

generates a new set of data based on training data that look like training data. GANs 

have two main blocks(two neural networks) which compete with each other and are 

able to capture, copy, and analyze the variations in a dataset. The two models are 

usually called Generator and Discriminator which we will cover in Components on 

GANs. To understand the term GAN let’s break it into separate three parts 
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 Generative – To learn a generative model, which describes how data is generated in 

terms of a probabilistic model. In simple words, it explains how data is generated 

visually. 

 Adversarial – The training of the model is done in an adversarial setting. 

 Networks – use deep neural networks for training purposes. 

The generator network takes random input (typically noise) and generates samples, 

such as images, text, or audio, that resemble the training data it was trained on. The 

goal of the generator is to produce samples that are indistinguishable from real data. 

The discriminator network, on the other hand, tries to distinguish between real and 

generated samples. It is trained with real samples from the training data and 

generated samples from the generator. The discriminator’s objective is to correctly 

classify real data as real and generated data as fake. 

The training process involves an adversarial game between the generator and the 

discriminator. The generator aims to produce samples that fool the discriminator, 

while the discriminator tries to improve its ability to distinguish between real and 

generated data. This adversarial training pushes both networks to improve over time. 

As training progresses, the generator becomes more adept at producing realistic 

samples, while the discriminator becomes more skilled at differentiating between real 

and generated data. Ideally, this process converges to a point where the generator is 

capable of generating high-quality samples that are difficult for the discriminator to 

distinguish from real data. 

GANs have demonstrated impressive results in various domains, such as image 

synthesis, text generation, and even video generation. They have been used for 

tasks like generating realistic images, creating deepfakes, enhancing low-resolution 

images, and more. GANs have greatly advanced the field of generative modeling 
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and have opened up new possibilities for creative applications in artificial 

intelligence. 

Why GANs was Developed? 

Machine learning algorithms and neural networks can easily be fooled to misclassify 

things by adding some amount of noise to data. After adding some amount of noise, 

the chances of misclassifying the images increase. Hence the small rise that, is it 

possible to implement something that neural networks can start visualizing new 

patterns like sample train data. Thus, GANs were built that generate new fake results 

similar to the original. 

Components of Generative Adversarial Networks (GANs) 

What is Geometric Intuition behind the working of GANs? 

Two major components of GANs are Generator and Discriminator. The role of the 

generator is like a thief to generate the fake samples based on the original sample 

and make the discriminator fool to understand Fake as real. On the other hand, a 

Discriminator is like a Police whose role is to identify the abnormalities in the 

samples created by Generator and classify them as Fake or real. This competition 

between both the component goes on until the level of perfection is achieved where 

Generator wins making a Discriminator fool on fake data. 
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Now let us understand, what is this two-component to understand the training 

process of GAN intuitively. 

1) Discriminator – It is a supervised approach means It is a simple classifier that 

predicts data is fake or real. It is trained on real data and provides feedback to a 

generator. 

2) Generator – It is an unsupervised learning approach. It will generate data that is 

fake data based on original(real) data. It is also a neural network that has hidden 

layers, activation, loss function. Its aim is to generate the fake image based on 

feedback and make the discriminator fool that it cannot predict a fake image. And 

when the discriminator is made a fool by the generator, the training stops and we 

can say that a generalized GAN model is created. 
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 Here the generative model captures the distribution of data and is trained in such a 

manner to generate the new sample that tries to maximize the probability of the 

discriminator to make a mistake(maximize discriminator loss). The discriminator on 

other hand is based on a model that estimates the probability that the sample it 

receives is from training data not from the generator and tries to classify it accurately 

and minimize the GAN accuracy. Hence the GAN network is formulated as a 

minimax game where the Discriminator is trying to minimize its reward V(D, G) and 

the generator is trying to maximize the Discriminator loss. 

Now you might be wondering how is an actual architecture of GAN, and how two 

neural networks are build and training and prediction is done? To simplify it have a 

look at the below general architecture of GAN. 

 

  

We know that both components are neural networks. we can see that generator 

output is directly connected to the input of the discriminator. And discriminator 

predicts it and through backpropagation, the generator receives a feedback signal to 

update weights and improve performance. The discriminator is a feed-forward neural 

network. 
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Training & Prediction of Generative Adversarial Networks (GANs): 

We know the geometric intuition of GAN, Now let us understand the training of Gan. 

In this section training of Generator and Discriminator will separately be clear to you. 

Step-1) Define a Problem 

The problem statement is key to the success of the project so the first step is to 

define your problem. GANs work with a different set of problems you are aiming so 

you need to define What you are creating like audio, poem, text, Image is a type of 

problem. 

Step-2) Select Architecture of GAN 

There are many different types of GAN, that we will study further. we have to define 

which type of GAN architecture we are using. 

Step-3) Train Discriminator on Real Dataset 

Now Discriminator is trained on a real dataset. It is only having a forward path, no 

backpropagation is there in the training of the Discriminator in n epochs. And the 

Data you are providing is without Noise and only contains real images, and for fake 

images, Discriminator uses instances created by the generator as negative output. 

Now, what happens at the time of discriminator training. 

 It classifies both real and fake data. 

 The discriminator loss helps improve its performance and penalize it when it 

misclassifies real as fake or vice-versa. 

 weights of the discriminator are updated through discriminator loss. 

Step-4) Train Generator 
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Provide some Fake inputs for the generator(Noise) and It will use some random 

noise and generate some fake outputs. when Generator is trained, Discriminator is 

Idle and when Discriminator is trained, Generator is Idle. During generator training 

through any random noise as input, it tries to transform it into meaningful data. to get 

meaningful output from the generator takes time and runs under many epochs. steps 

to train a generator are listed below. 

 get random noise and produce a generator output on noise sample 

 predict generator output from discriminator as original or fake. 

 we calculate discriminator loss. 

 perform backpropagation through discriminator, and generator both to calculate 

gradients. 

 Use gradients to update generator weights. 

Step-5) Train Discriminator on Fake Data 

The samples which are generated by Generator will pass to Discriminator and It will 

predict the data passed to it is Fake or real and provide feedback to Generator 

again. 

Step-6) Train Generator with the output of Discriminator 

Again Generator will be trained on the feedback given by Discriminator and try to 

improve performance. 

This is an iterative process and continues running until the Generator is not 

successful in making the discriminator fool. 
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Generative Adversarial Networks (GANs) Loss Function 

I hope that the working of the GAN network is completely understandable and now 

let us understand the loss function it uses and minimize and maximize in this 

iterative process. The generator tries to minimize the following loss function while the 

discriminator tries to maximize it. It is the same as a minimax game if you have ever 

played. 

 

 D(x) is the discriminator’s estimate of the probability that real data instance x is real. 

 Ex is the expected value over all real data instances. 

 G(z) is the generator’s output when given noise z. 

 D(G(z)) is the discriminator’s estimate of the probability that a fake instance is real. 

 Ez is the expected value over all random inputs to the generator (in effect, the 

expected value over all generated fake instances G(z)). 

 The formula is derived from cross-entropy between 
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Challenges Faced by Generative Adversarial Networks (GANs) 

1. The problem of stability between generator and discriminator. We do not want 

that discriminator should be too strict, we want to be lenient. 

2. Problem to determine the positioning of objects. suppose in a picture we have 

3 horse and generator have created 6 eyes and 1 horse. 

3. The problem in understanding the global objects – GANs do not understand 

the global structure or holistic structure which is similar to the problem of 

perspective. It means sometimes GAN generates an image that is unrealistic 

and cannot be possible. 

A problem in understanding the perspective – It cannot understand the 3-d 

images and if we train it on such types of images then it will fail to create 3-d 

images because today GANs are capable to work on 1-d images. 

Different Types of Generative Adversarial Networks (GANs): 

1) DC GAN – It is a Deep convolutional GAN. It is one of the most used, powerful, 

and successful types of GAN architecture. It is implemented with help of ConvNets in 

place of a Multi-layered perceptron. The ConvNets use a convolutional stride and are 

built without max pooling and layers in this network are not completely connected. 

2) Conditional GAN and Unconditional GAN (CGAN) – Conditional GAN is deep 

learning neural network in which some additional parameters are used. Labels are 

also put in inputs of Discriminator in order to help the discriminator to classify the 

input correctly and not easily full by the generator. 

3) Least Square GAN(LSGAN) – It is a type of GAN that adopts the least-square 

loss function for the discriminator. Minimizing the objective function of LSGAN results 

in minimizing the Pearson divergence. 
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4) Auxilary Classifier GAN(ACGAN) – It is the same as CGAN and an advanced 

version of it. It says that the Discriminator should not only classify the image as real 

or fake but should also provide the source or class label of the input image. 

5) Dual Video Discriminator GAN – DVD-GAN is a generative adversarial network for video 

generation built upon the BigGAN architecture. DVD-GAN uses two discriminators: a Spatial 

Discriminator and a Temporal Discriminator. 

6) SRGAN – Its main function is to transform low resolution to high resolution known 

as Domain Transformation. 

7) Cycle GAN 

It is released in 2017 which performs the task of Image Translation. Suppose we 

have trained it on a horse image dataset and we can translate it into zebra images. 

8) Info GAN – Advance version of GAN which is capable to learn to disentangle 
representation in an unsupervised learning approach. 

Top Generative Adversarial Networks Applications: 

Generate Examples for Image Datasets: 

GANs can be used to generate new examples for image datasets in various 
domains, such as medical imaging, satellite imagery, and natural language 
processing. By generating synthetic data, researchers can augment existing 
datasets and improve the performance of machine learning models. 

Generate Photographs of Human Faces: 

GANs can generate realistic photographs of human faces, including images of 
people who do not exist in the real world. You can use these rendered images for 
various purposes, such as creating avatars for online games or social media profiles. 

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp
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Generate Realistic Photographs: 

GANs can generate realistic photographs of various objects and scenes, including 
landscapes, animals, and architecture. These rendered images can be used to 
augment existing image datasets or to create entirely new datasets. 

Generate Cartoon Characters: 

GANs can be used to generate cartoon characters that are similar to those found in 
popular movies or television shows. These developed characters can create new 
content or customize existing characters in games and other applications. 

Image-to-Image Translation: 

GANs can translate images from one domain to another, such as converting a 
photograph of a real-world scene into a line drawing or a painting. You can create 
new content or transform existing images in various ways. 

Text-to-Image Translation: 

GANs can be used to generate images based on a given text description. You can 
use it to create visual representations of concepts or generate images for machine 
learning tasks. 

Semantic-Image-to-Photo Translation: 

GANs can translate images from a semantic representation (such as a label map or 
a segmentation map) into a realistic photograph. You can use it to generate synthetic 
data for training machine learning models or to visualize concepts more practically. 

Face Frontal View Generation: 

GANs can generate frontal views of faces from images that show the face at an 
angle. You can use it to improve face recognition algorithms' performance or 
synthesize pictures for use in other applications. 

Generate New Human Poses: 

GANs can generate images of people in new poses, such as difficult or impossible 
for humans to achieve. It can be used to create new content or to augment existing 
image datasets. 
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Photos to Emojis: 

GANs can be used to convert photographs of people into emojis, creating a more 
personalized and expressive form of communication. 

Photograph Editing: 

GANs can be used to edit photographs in various ways, such as changing the 
background, adding or removing objects, or altering the appearance of people or 
animals in the image. 

Face Aging: 

GANs can be used to generate images of people at different ages, allowing users to 
visualize how they might look in the future or to see what they might have looked like 
in the past. 

Difference Between Discriminative and Generative Models 

Some of the differences between the Discriminative and Generative 

Models. 

Core Idea 

Discriminative models draw boundaries in the data space, while generative 

models try to model how data is placed throughout the space. A generative 

model explains how the data was generated, while a discriminative model 

focuses on predicting the labels of the data. 

Mathematical Intuition 

In mathematical terms, discriminative machine learning trains a model, 

which is done by learning parameters that maximize the conditional 

probability P(Y|X). On the other hand, a generative model learns 

parameters by maximizing the joint probability of P(X, Y). 

Applications 
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Discriminative models recognize existing data, i.e., discriminative modeling 

identifies tags and sorts data and can be used to classify data, while 

Generative modeling produces something. 

Since these models use different approaches to machine learning, both are 

suited for specific tasks i.e., Generative models are useful for unsupervised 

learning tasks. In contrast, discriminative models are useful for supervised 

learning tasks. GANs(Generative adversarial networks) can be thought of 

as a competition between the generator, which is a component of the 

generative model, and the discriminator, so basically, it is generative vs. 

discriminative model. 

Outliers 

Generative models have more impact on outliers than discriminative models. 

Computational Cost 

Discriminative models are computationally cheap as compared to generative models. 

Comparison Between Discriminative and Generative Models: 

Some of the comparisons based on the following criteria between Discriminative and 

Generative Models: 

Based on Performance 

Generative models need fewer data to train compared with discriminative models 

since generative models are more biased as they make stronger assumptions, 

i.e., assumption of conditional independence. 

Based on Missing Data 
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In general, if we have missing data in our dataset, then Generative models can work 

with these missing data, while discriminative models can’t. This is because, in 

generative models, we can still estimate the posterior by marginalizing the unseen 

variables. However, discriminative models usually require all the features X to be 

observed. 

Based on the Accuracy Score 

If the assumption of conditional independence violates, then at that time, generative 

models are less accurate than discriminative models. 

Based on Applications 

Discriminative models are called “discriminative” since they are useful for 

discriminating Y’s label, i.e., target outcome, so they can only solve classification 

problems. In contrast, Generative models have more applications besides 

classification, such as samplings, Bayes learning, MAP inference, etc. 

Generative Models vs Discriminative Models: 

Machine learning (ML) and deep learning (DL) are two of the most exciting and 
constantly changing fields of study of the 21st century. Using these technologies, 
machines are given the ability to learn from past data and predict or make decisions 
from future, unseen data. 

The inspiration comes from the human mind, how we use past experiences to help 
us make informed decisions in the present and the future. And while there are 
already many applications of ML and DL, the future possibilities are endless. 

Computers utilize mathematics, algorithms, and data pipelines to draw meaningful 
inferences from raw data since they cannot perceive data and information like 
humans - not yet, at least. There are two ways we can improve a machine’s 
efficiency: either get more data or come up with newer or more robust algorithms. 

Quintillions of data are generated all over the world almost daily, so getting fresh 
data is easy. But in order to work with this gigantic amount of data, we need new 
algorithms or we need to scale up existing ones. 
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Mathematics, especially branches like calculus, probability, statistics, etc., is the 
backbone of these algorithms or models. They can be widely divided into two 
groups: 

1. Discriminative models 
2. Generative models 

Mathematically, generative classifiers assume a functional form for P(Y) and P(X|Y), 
then generate estimated parameters from the data and use the Bayes’ theorem to 
calculate P(Y|X) (posterior probability). Meanwhile, discriminative classifiers assume 
a functional form of P(Y|X) and estimate the parameters directly from the provided 
data. 

 

Discriminative model 

The majority of discriminative models, aka conditional models, are used for 
supervised machine learning. They do what they ‘literally’ say, separating the data 
points into different classes and learning the boundaries using probability estimates 
and maximum likelihood. 

Outliers have little to no effect on these models. They are a better choice than 
generative models, but this leads to misclassification problems which can be a major 
drawback. 

Here are some examples and a brief description of the widely used discriminative 
models: 

1. Logistic regression: Logistic regression can be considered the linear regression of 
classification models. The main idea behind both the algorithms is similar, but while 
linear regression is used for predicting a continuous dependent variable, logistic 
regression is used to differentiate between two or more classes. 

2. Support vector machines: This is a powerful learning algorithm with applications 
in both regression and classification scenarios. An n-dimensional space containing 
the data points is divided into classes by decision boundaries using support vectors. 
The best boundary is called a hyperplane. 

3. Decision trees: A graphical tree-like model is used to map decisions and their 
probable outcomes. It could be thought of as a robust version of If-else statements. 
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A few other examples are commonly-used neural nets, k-nearest neighbor (KNN), 
conditional random field (CRF), random forest, etc. 

Generative model 

As the name suggests, generative models can be used to generate new data points. 
These models are usually used in unsupervised machine learning problems. 

Generative models go in-depth to model the actual data distribution and learn the 
different data points, rather than model just the decision boundary between classes. 

These models are prone to outliers, which is their only drawback when compared to 
discriminative models. The mathematics behind generative models is quite intuitive 
too. The method is not direct like in the case of discriminative models. To calculate 
P(Y|X), they first estimate the prior probability P(Y) and the likelihood probability 
P(X|Y) from the data provided. 

Putting the values into Bayes’ theorem’s equation, we get an accurate value for 
P(Y|X). 

 

Here are some examples as well as a description of generative models: 

1. Bayesian network: Also known as Bayes’ network, this model uses a directed 
acyclic graph (DAG) to draw Bayesian inferences over a set of random variables to 
calculate probabilities. It has many applications like prediction, anomaly detection, 
time series prediction, etc. 

2. Autoregressive model: Mainly used for time series modeling, it finds a correlation 
between past behaviors to predict future behaviors. 

3. Generative adversarial network (GAN): It’s based on deep learning technology 
and uses two sub models. The generator model trains and generates new data 
points and the discriminative model classifies these ‘generated’ data points into real 
or fake. 

Some other examples include Naive Bayes, Markov random field, hidden Markov 
model (HMM), latent Dirichlet allocation (LDA), etc. 
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Discriminative vs generative: Which is the best fit for Deep Learning? 

 

Discriminative models divide the data space into classes by learning the boundaries, 
whereas generative models understand how the data is embedded into the space. 
Both the approaches are widely different, which makes them suited for specific 
tasks. 

Deep learning has mostly been using supervised machine learning algorithms like 
artificial neural networks (ANNs), convolutional neural networks (CNNs), and 
recurrent neural networks (RNNs). ANN is the earliest in the trio and leverages 
artificial neurons, backpropagation, weights, and biases to identify patterns based on 
the inputs. CNN is mostly used for image recognition and computer vision tasks. It 
works by pooling important features from an input image. RNN, which is the latest of 
the three, is used in advanced fields like natural language processing, handwriting 
recognition, time series analysis, etc. 

These are the fields where discriminative models are effective and better used for 
deep learning as they work well for supervised tasks. 

Apart from these, deep learning and neural nets can be used to cluster images 
based on similarities. Algorithms like autoencoder, Boltzmann machine, and self-
organizing maps are popular unsupervised deep learning algorithms. They make use 
of generative models for tasks like exploratory data analysis (EDA) of high 
dimensional datasets, image denoising, image compression, anomaly detection and 
even generating new images. 

This Person Does Not Exist - Random Face Generator is an interesting website that 
uses a type of generative model called StyleGAN to create realistic human faces, 
even though the people in these images don’t exist! 

https://this-person-does-not-exist.com/en
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UNIT- V AUTO-ENCODERS: Auto-encoders, Architecture and components of 

auto-encoders (encoder and decoder), Training an auto-encoder for data 

compression and reconstruction, Relationship between Autoencoders and 

GANs, Hybrid Models: Encoder-Decoder GANs. 

Auto-encoders: 

Autoencoders are a type of deep learning algorithm that are designed to receive an input 

and transform it into a different representation. They play an important part in image 

construction. 
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Artificial Intelligence encircles a wide range of technologies and techniques that enable computer 

systems to solve problems like Data Compression which is used in computer vision, computer 

networks, computer architecture, and many other fields. 

 Autoencoders are unsupervised neural networks that use machine learning to do this compression 

for us. 

What Are Autoencoders? 

An autoencoder neural network is an Unsupervised Machine learning algorithm that 
applies backpropagation, setting the target values to be equal to the inputs. Autoencoders 
are used to reduce the size of our inputs into a smaller representation. If anyone needs the 
original data, they can reconstruct it from the compressed data. 

 

We have a similar machine learning algorithm ie. PCA (principal component analysis) which 
does the same task.  

Autoencoders: Its Emergence 

Autoencoders are preferred over PCA because: 

 

 An autoencoder can learn non-linear transformations with a non-linear activation 
function and multiple layers. 

 It doesn’t have to learn dense layers. It can use convolutional layers to learn which is better 
for video, image and series data. 

 It is more efficient to learn several layers with an autoencoder rather than learn one huge 
transformation with PCA. 

 An autoencoder provides a representation of each layer as the output. 
 It can make use of pre-trained layers from another model to apply transfer learning to 

enhance the encoder/decoder. 

We will look at a few Industrial Applications of Autoencoders. 

https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/what-is-machine-learning/
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Applications of Autoencoders 

Image Coloring 

 

Autoencoders are used for converting any black and white picture into a colored image. Depending on 
what is in the picture, it is possible to tell what the color should be. 

Feature variation 
It extracts only the required features of an image and generates the output by removing any noise or 
unnecessary interruption. 

 

 

 

Dimensionality Reduction 
The reconstructed image is the same as our input but with reduced dimensions. It helps in providing 
the similar image with a reduced pixel value. 
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 Denoising Image 

The input seen by the autoencoder is not the raw input but a stochastically corrupted version. A 
denoising autoencoder is thus trained to reconstruct the original input from the noisy version. 

 

 
 

Watermark Removal 
It is also used for removing watermarks from images or to remove any object while filming a video or a 
movie. 

 
 Architecture of Autoencoders 

An Autoencoder consist of three layers: 

1. Encoder 
2. Code 
3. Decoder 
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 Encoder: This part of the network compresses the input into a latent space representation. 
The encoder layer encodes the input image as a compressed representation in a reduced 
dimension. The compressed image is the distorted version of the original image. 

 Code: This part of the network represents the compressed input which is fed to the decoder. 

 Decoder: This layer decodes the encoded image back to the original dimension. The 
decoded image is a lossy reconstruction of the original image and it is reconstructed from the 
latent space representation. 

 

The layer between the encoder and decoder, ie. the code is also known as Bottleneck. This is a well-
designed approach to decide which aspects of observed data are relevant information and what 
aspects can be discarded. It does this by balancing two criteria: 

 Compactness of representation, measured as the compressibility. 

  It retains some behaviourally relevant variables from the input.  

 Training an auto-encoder for data compression and reconstruction: 

An autoencoder consists of two parts: an encoder network and a decoder network. The encoder 
network compresses the input data, while the decoder network reconstructs the compressed data 
back into its original form. The compressed data, also known as the bottleneck layer, is typically much 
smaller than the input data.  

The encoder network takes the input data and maps it to a lower-dimensional representation. This 
lower-dimensional representation is the compressed data. The decoder network takes this 
compressed data and maps it back to the original input data. The decoder network is essentially the 
inverse of the encoder network. 
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The bottleneck layer is the layer in the middle of the autoencoder that contains the compressed data. 
This layer is much smaller than the input data, which is what allows for compression. The size of the 
bottleneck layer determines the amount of compression that can be achieved. 

Autoencoders differ from other deep learning architectures, such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), in that they do not require labeled data. Autoencoders 
can learn the underlying structure of the data without any explicit labels. 

 Image Compression with Autoencoders 

There are two types of image compression: lossless and lossy. Lossless compression methods 
preserve all of the data in the original image, while lossy compression methods discard some of the 
data to achieve higher compression rates. 
  
Autoencoders can be used for both lossless and lossy compression. Lossless compression can be 
achieved by using a bottleneck layer that is the same size as the input data. In this case, the 
autoencoder essentially learns to encode and decode the input data without any loss of information. 
  
Lossy compression can be achieved by using a bottleneck layer that is smaller than the input data. In 
this case, the autoencoder learns to discard some of the data to achieve higher compression rates. 
The amount of data that is discarded depends on the size of the bottleneck layer. 
Here are some examples of image compression using autoencoders: 

 A 512×512 color image can be compressed to a 64×64 grayscale image using an 
autoencoder with a bottleneck layer of size 64. 

 A 256×256 grayscale image can be compressed to a 128×128 grayscale image using 
an autoencoder with a bottleneck layer of size 128. 

  

The effectiveness of autoencoder-based compression techniques can be evaluated by comparing the 
compressed and reconstructed images to the original images. The most common evaluation metric is 
the peak signal-to-noise ratio (PSNR), which measures the amount of noise introduced by the 
compression algorithm. Higher PSNR values indicate better compression quality. 

Image Reconstruction with Autoencoders 

Autoencoders are a type of neural network that can be used for image compression and 
reconstruction. The process involves compressing an image into a smaller representation and then 
reconstructing it back to its original form. Image reconstruction is the process of creating an image 
from compressed data. 

Explanation of image reconstruction from compressed data: 

The compressed data can be thought of as a compressed version of the original image. To 
reconstruct the image, the compressed data is fed through a decoder network, which expands the 
data back to its original size. The reconstructed image will not be identical to the original, but it will be 
a close approximation. 

How autoencoders can be used for image reconstruction: 

Autoencoders use a loss function to determine how well the reconstructed image matches the 
original. The loss function calculates the difference between the reconstructed image and the original 
image. The goal of the autoencoder is to minimize the loss function so that the reconstructed image is 
as close to the original as possible. 
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Examples of image reconstruction using autoencoders: 

An example of image reconstruction using autoencoders is the MNIST dataset, which consists of 
handwritten digits. The autoencoder is trained on the dataset to compress and reconstruct the 
images. Another example is the CIFAR-10 dataset, which consists of 32×32 color images of objects. 
The autoencoder can be trained on this dataset to compress and reconstruct the images. 

Evaluation of the effectiveness of autoencoder-based reconstruction 

techniques: 

The effectiveness of autoencoder-based reconstruction techniques can be evaluated using metrics 
such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). PSNR measures the 
quality of the reconstructed image by comparing it to the original image, while SSIM measures the 
structural similarity between the reconstructed and original images.  

Variations of Autoencoders for Image Compression and Reconstruction 

Autoencoders can be modified and improved for better image compression and reconstruction. Some 
of the variations of autoencoders are: 

Denoising autoencoders: 

Denoising autoencoders are used to remove noise from images. The autoencoder is trained on noisy 
images and is trained to reconstruct the original image from the noisy input. 

Variational autoencoders: 

Variational autoencoders (VAEs) are a type of autoencoder that learn the probability distribution of the 
input data. VAEs are trained to generate new samples from the learned distribution. This makes VAEs 
suitable for image generation tasks. 

Convolutional autoencoders: 

Convolutional autoencoders (CAEs) use convolutional neural networks (CNNs) for image 
compression and reconstruction. CNNs are specialized neural networks that can learn features from 
images. 

Comparison of the effectiveness of different types of autoencoders for image 

compression and reconstruction: 

The effectiveness of different types of autoencoders for image compression and reconstruction can 
be compared using metrics such as PSNR and SSIM. CAEs are generally more effective for image 
compression and reconstruction than other types of autoencoders. VAEs are better suited for image 
generation tasks. 

Real-Time Examples: 

A real-time example of an autoencoder for image compression and reconstruction is Google’s Guetzli 
algorithm. Guetzli uses a combination of a perceptual metric and a psycho-visual model to compress 
images while maintaining their quality. Another example is the Deep Image Prior algorithm, which 
uses a convolutional neural network to reconstruct images from compressed data. 
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Applications of Autoencoders for Image Compression and Reconstruction 

Autoencoders have become increasingly popular for image compression and reconstruction 
tasks due to their ability to learn efficient representations of the input data. In this, we will 
explore some of the common applications of autoencoders for image compression and 
reconstruction. 

Medical Imaging: 

Autoencoders have shown great promise in medical imaging applications such as Magnetic 
Resonance Imaging (MRI), Computed Tomography (CT), and X-Ray imaging. The ability of 
autoencoders to learn feature representations from high-dimensional data has made them 
useful for compressing medical images while preserving diagnostic information. For 
example, researchers have developed a deep learning-based autoencoder approach for 
compressing 3D MRI images, which achieved higher compression ratios than traditional 
compression methods while preserving diagnostic quality. This can have significant 
implications for improving the storage and transmission of medical images, especially in 
resource-limited settings. 

Video Compression: 

Autoencoders have also been used for video compression, where the goal is to compress a 
sequence of images into a compact representation that can be transmitted or stored 
efficiently. One example of this is the video codec AV1, which uses a combination of 
autoencoders and traditional compression methods to achieve higher compression rates 
while maintaining video quality. The autoencoder component of the codec is used to learn 
spatial and temporal features of the video frames, which are then used to reduce 
redundancy in the video data. 

Autonomous Vehicles: 

Autoencoders are also useful for autonomous vehicle applications, where the goal is to 
compress high-resolution camera images captured by the vehicle’s sensors while preserving 
critical information for navigation and obstacle detection. For example, researchers have 
developed an autoencoder-based approach for compressing images captured by a self-
driving car, which achieved high compression ratios while preserving the accuracy of object 
detection algorithms. This can have significant implications for improving the performance 
and reliability of autonomous vehicles, especially in scenarios where high-bandwidth 
communication is not available. 

Social Media and Web Applications: 

Autoencoders have also been used in social media and web applications, where the goal is 
to reduce the size of image files to improve website loading times and reduce bandwidth 
usage. For example, Facebook uses an autoencoder-based approach for compressing 
images uploaded to their platform, which achieves high compression ratios while preserving 
image quality. This has led to faster loading times for images on the platform and reduced 
data usage for users. 
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Comparison of the effectiveness of autoencoder-based compression and 

reconstruction techniques for different applications: 

The effectiveness of autoencoder-based compression and reconstruction techniques can 
vary depending on the application and the specific requirements of the task. For example, in 
medical imaging applications, the preservation of diagnostic information is critical, while in 
social media applications, image quality and loading times may be more important. 
Researchers have compared the effectiveness of autoencoder-based compression and 
reconstruction techniques with traditional compression methods and have found that 

autoencoder-based methods often outperform traditional methods in terms of compression ratio and 
image quality. 

Relationship between Autoencoders and GANs: 

Autoencoders and GANs are both powerful techniques for learning from data 

in an unsupervised way, but they have some differences and trade-offs. 

Autoencoders are easier to train and more stable, but they tend to produce blurry or 

distorted reconstructions or generations. GANs are harder to train and more prone 

to mode collapse, where they produce only a few modes of the data distribution, but 

they tend to produce sharper and more diverse generations. Depending on your goal 

and your data, you might prefer one or the other, or even combine them in a hybrid 

model. 

Autoencoders are unsupervised models, which means that they are not 

trained on labeled data. Instead, they are trained on unlabeled data and learn to 

reconstruct the input data. GANs, on the other hand, are supervised models, which 

means that they are trained on labeled data. The generator in a GAN is trained to 

generate data that looks like the labeled data, and the discriminator is trained to 

distinguish between real and fake data. Autoencoders are typically used for tasks 

such as image denoising and compression. GANs are typically used for tasks such as 

image generation and translation. 

Hybrid Models: Encoder-Decoder GANs: 

How can you combine GANs and autoencoders to create hybrid models for various tasks? 

Generative adversarial networks (GANs) and autoencoders are two powerful types of 

artificial neural networks that can learn from data and generate new samples. But what if 

you could combine them to create hybrid models that can perform various tasks, such as 

image synthesis, anomaly detection, or domain adaptation? In this article, you will learn 

how GANs and autoencoders work, and how you can combine them to create hybrid models 

for various tasks. 
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GANs and autoencoders 

GANs are composed of two networks: a generator and a discriminator. The generator tries to 

create realistic samples from random noise, while the discriminator tries to distinguish 

between real and fake samples. The two networks compete with each other, improving their 

skills over time. Autoencoders are composed of two networks: an encoder and a decoder. 

The encoder compresses the input data into a lower-dimensional representation, while the 

decoder reconstructs the input data from the representation. The goal is to minimize the 

reconstruction error, while learning useful features from the data. 

 

Hybrid models 

Hybrid models are models that combine GANs and autoencoders in different ways, 

depending on the task and the objective. For example, you can use an autoencoder 

as the generator of a GAN, and train it to fool the discriminator, while also 

minimizing the reconstruction error. This way, you can generate realistic samples that 

are similar to the input data, but also have some variations. Alternatively, you can use 

a GAN as the encoder of an autoencoder, and train it to encode the input data into a 

latent space that is compatible with the discriminator. This way, you can learn a 

meaningful representation of the data that can be used for downstream tasks, such 

as classification or clustering. 

 

Image synthesis 

One of the most common tasks for hybrid models is image synthesis, which is the 

process of creating new images from existing ones, or from scratch. For example, you 

can use a hybrid model to synthesize images of faces, animals, or landscapes, by 

using an autoencoder as the generator of a GAN, and feeding it with real images or 

random noise. This way, you can create diverse and realistic images that preserve the 

attributes of the input data, but also have some variations. You can also use a hybrid 

model to synthesize images of different domains, such as converting photos to 

paintings, or day to night, by using a GAN as the encoder of an autoencoder, and 

feeding it with images from both domains. This way, you can learn a common latent 

space that can be used to transfer the style or the attributes of one domain to 

another. 

 

Anomaly detection 

Another task for hybrid models is anomaly detection, which is the process of 

identifying abnormal or unusual patterns in the data, such as outliers, frauds, or 

defects. For example, you can use a hybrid model to detect anomalies in images, 

such as damaged products, or medical conditions, by using an autoencoder as the 
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generator of a GAN, and feeding it with normal images. This way, you can train the 

autoencoder to reconstruct normal images well, but fail to reconstruct abnormal 

images. Then, you can use the reconstruction error or the discriminator score as a 

measure of anomaly. You can also use a hybrid model to detect anomalies in time 

series, such as sensor readings, or financial transactions, by using a GAN as the 

encoder of an autoencoder, and feeding it with normal time series. This way, you can 

train the GAN to encode normal time series well, but fail to encode abnormal time 

series. Then, you can use the latent space or the discriminator score as a measure of 

anomaly. 

 

Domain adaptation 

A third task for hybrid models is domain adaptation, which is the process of adapting 

a model trained on one domain to work on another domain, without requiring 

labeled data from the target domain. For example, you can use a hybrid model to 

adapt a model trained on images of handwritten digits to work on images of 

handwritten letters, by using a GAN as the encoder of an autoencoder, and feeding it 

with images from both domains. This way, you can train the GAN to encode both 

domains into a shared latent space that is invariant to the domain differences. Then, 

you can use the latent space as the input for a classifier or a decoder that can work 

on both domains. 
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